
1. Vectors
Introduction to Vectors

A vector is a mathematical object with both a magnitude and direction. Two vectors are
identical as long as these two properties are the same, regardless of their start and end
points.

The components of vectors can either be written as

⟨a, b, c⟩

or as a scalar multiple of unit vectors (i,j,k)

→v = aî + bĵ + ck̂

Vector Operations

Determining the Norm �Magnitude) of a Vector

Finding a Unit Vector in the Same Direction as Another Vector

Vector Addition

Direction Angles and Orthogonal Projections

Direction angles are the angles a vector forms with the x/y/z axes. They link the
directional component of a vector with its magnitude.

cos(α) =
vx

∥v∥

cos(β) =
vy

∥v∥

 Pythagorean Theorem/Distance Formula

 Find magnitude of vector
 Divide that vector by its magnitude for a unit vector in the same direction as the

original vector

 Add components in the same direction
visualized via tip-tail method or as a parallelogram



cos(γ) =
vz

∥v∥

cos2(α) + cos2(β) + cos2(γ) = 1

Orthogonal projections represent how much two vectors align.

 A vector is mapped
onto a subspace so that the line between the original vector and its projection is
perpendicular (orthogonal) to the subspace.

The projection vector of a onto b is

Proj
→b
→a = (→a ⋅

→b

∥b∥
)

→b

∥b∥

Orthogonal Decomposition

To break down any vector into two perpendicular components, use orthogonal
projections.

dot product gives component of a in direction of b; division makes both b vectors unit
vectors
derivation



]

Dot and Cross Product

Dot Product (Scalar)

Definition The dot product is an algebraic operation on two vectors, returning a scalar
quantity representing a measure of how much the two vectors align with one another.

a ⋅ b

Calculating the Dot Product The dot product can either be calculated with vector
components or geometrically via magnitude + angle.

a ⋅ b = axbx + ayby + azbz =∥u∥∥v∥ cos(θ)

Geometric Significance

Properties

Cross Product (Vector)

If the dot product of two vectors is zero, the vectors are perpendicular to one another
Cosine angle between vectors can be found by dividing dot product by magnitudes

Commutative
Distributive
Scalar Multiplication



Definition Binary operation on two vectors in 3D space, resulting in a vector
perpendicular to both original vectors.

a × b

Calculating the Cross Product Using vector components, the cross product is the
determinant of a 3�3 matrix with unit vectors i/j/k in the first row

a × b = = (aybz − byaz)i − (axbz − bxaz)j + (axby − bxay)k

Geometric Significance Magnitude of cross product is, representing the area of the
parallelogram formed by the two vectors

u × v = ∥u∥∥v∥ sin(θ)

Properties:

Scalar Triple Product

Definition A scalar triple product is

→a ⋅ (→b × →c)

resulting in a scalar (dot product of a and (b x c)).

Calculating the Scalar Triple Product The scalar triple product is the determinant of the
3�3 matrix formed by the component of the vectors:

a ⋅ (b × c) = = ax(bycz − cybz) − ay(bxcz − cxbz) + az(bxcy − cxby)∣

i j k

ax ay az

bx by bz

∣
not commutative
distributive over vector addition, scalar multiplication
direction of resulting vector from cross product follows right-hand rule

∣

ax ay az

bx by bz

cx cy cz

∣



Geometric Significance The absolute value of the scalar triple product is the volume of

the parallelepiped formed by the 3 vectors. 

A volume of 0 occurs if:

Properties

Specific Problem Solving

1. Equation of Plane Given Point + Normal Vector to Plane

3. Finding Perpendicular Distance to a Plane

vectors are coplanar
any two vectors are parallel
any one of the vectors is a zero vector

 Cyclic permutation

a ⋅ (b × c) = b ⋅ (c × a) = c ⋅ (a × b)

 Swapping order of two crossed vectors changes the sign
 Distributive propety for vector addition (within cross product)

 Find normal vector n = �A, B, C� via cross product of 2 vectors on plane
 Take a point P(x0, y0, z0) on the plane

 We know that the distance vector of point P(x0, y0, z0) to any point Q (x, y, z) on the
plane is always perpendicular to the normal vector

 Using that and the dot product formula, expanding, we get

A(x − x0) + B(y − y0) + C(z − z0) = 0

 Take 2 vectors lying on the plane and take their cross product (results in a vector
perpendicular to the plane)

 Find the normal unit vector (divide normal vector by its magnitude)



4. Finding Distance from Point to a Line

Parametric and Vector Equations of Lines

For a line L containing (x, y, z) in 3-space passing through (x0, y0, z0) with parallel v =
⟨a, b, c⟩ Parametric Equation

x = x0 + at

y = y0 + bt

z = z0 + ct

From this we get the Vector Equation

⟨x, y, z⟩ = ⟨x0, y0, z0⟩ + t⟨a, b, c⟩

Skew Lines

In 3D space, it's possible for two lines to neither be parallel nor intersect at all, forming
skew lines. To show that two lines are skew, you must prove that they are 1� not parallel
and 2� don't intersect.

Problem Solving Steps:

 Dot product of vector from outside point to point on the plane with normal unit vector
gives perpendicular distance

 Find vector of 2 points on the line as well as vector of outside point to a point on the
line

 Cross product for area of parallelogram
 Divide area of parallelogram by known length of side of parallelogram (magnitude of

vector of 2 points on line) ⟶ get the height of parallelogram, which is perpendicular
(shortest) distance to line

x/y/z components of line = initial point + multiplier times component of parallel
direction vector
Derivation

 Determine whether direction vectors are scalar multiples of one another (components
are proportional). If so, they are parallel.

 Set the 2 sets of parametric equations equal to one another (equation for x1 = x2,
y1 = y2, z1 = z2). Determine whether the set of equations are true by solving for t1 and
t2. If true, find the intersection by plugging t1 or t2 in either of the original parametric
equations.



Prove 2 Sets of Parametric Equations Represent the Same Line

There are infinitely many ways to represent a line with parametric equations, whether by
taking any point on the line or taking any parallel direction vector in the same direction.

To show that 2 sets of parametric equations are equal, you must show that they are
parallel and share a point, since it's impossible for parallel lines to intersect otherwise

Problem Solving Steps:

Use the first two systems to find t1 and t2. Plug into the third equation in the
system to ensure that the equation comes out to be true.

 Show that the two sets are parametric equations have parallel direction vectors in the
same direction.

 Show that 1 of the 2 points given are on both lines



2. Planes and Surfaces
Introduction to Planes

A plane is generally defined by a vector normal to the plane and a point on the plane.

There are two common forms of a plane, the point-normal form
A(x − x0) + B(y − y0) + C(z − z0) = 0 and the standard form Ax + By + Cz = D.

Intersection of a Line and a Plane

To find where a line intersects a plane, substitute parametric equations of line (x/y/z = a +
bt) into the plane equation (for x/y/z) and solve for the parameter t.

If t = all real values, the line lies one the plane.

Intersection of 2 Planes

If the normal vectors of the two planes are scalar multiples of each other, then the planes
are parallel and there is no intersection.

To find the line formed by the intersection of 2 planes: Parametric:

Alternatively:

A, B, and C represent components of the normal vector to the plane
x0,  y0,  z0 represent coordinates of point on plane

 Take the cross product of the normal directional vectors of both planes. This gives
the directional vector of the line of intersection.

 Find an intersection point of two planes and plug in for the parametric equations of a
line (directional vector as coefficient of t, point as "intercept").

To do so, set one variable to a constant. Then, the two plane equations form a
linear system of equations.

 Take the system of equations (of the planes) and eliminate one variable. Now we're
left with 2 variables, 1 equation (leave x and y).

 Substitute equation of line into one of the original plane equations to get relationship
for eliminated variable.

 Obtain the parametric equations for line since you have relationships between all 3
variables.



To Find Direction Vector of Intersection Line� Take the cross product of the normal
vectors of the two planes. Reasoning: The normal vector must be orthogonal to every
vector on that plane. Therefore, the line orthogonal to both planes' normal vectors must
lie on both planes. This line must be the intersection line, as it's the only line that lies on
both planes.

Angle Between 2 Planes

If two planes have normal vectors n1 and n2, the acute angle between them can be found
by

cos θ =
n1 ⋅ n2

∥n1∥∥n2∥

Distance

Between a Point and a Plane� The distance d between the point P(x0, y0, z0) and the plane
with equation Ax + By + Cz + D = 0.

d =
|Ax0 + By0 + Cz0 + D|

√A2 + B2 + C2

The angle between planes is equal to the angle between their normal vectors



For a point Q on the plane, the distance d is equal to QP dotted with the unit normal
vector.

Between 2 Parallel Planes:

Denominator is norm of normal vector
Numerator is dot product



Graphing Surfaces Using Traces

In 2D, the general shape of the curve can be obtained through having a bunch of points
that lie on the curve. Similarly, in 3D, the shape of a surface can be obtained by having a
bunch of curves the lie on the surface.

Each curve can be thought of as the intersection of a plane with the surface. The set of
points on this intersection/curve is called the trace of the surface in that plane.

Geometric Interpretation

The goal is to take many slices of the surface, to the point that the traces provide an
outline of the 3D surface.



Algebraic Interpretation

Procedure for finding the trace of a surface in a plane:

Graphing Quadric Surfaces Using Traces

A general second degree equation in x, y, and z has the general form

Ax2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0

Translations for Quadric Surfaces operate the same way as 2D surfaces.

 Determine the equation of the plane.
 Substitute plane conditions into the equation of the surface.
 Graph the resulting equation involving only 2 dimensions (trace equation)



Common Types of Quadric Surfaces

Start with sphere with fractional denominators

Ellipsoid:  Hyperboloid of One Sheet:

 Hyperboloid of Two Sheets:  Elliptic

If S is the curve for E(x,y,z), then the curve S' for E(x-a, y-b, z-c) is S translated a/b/c
units in the x/y/z directions respectively.

 one minus sign (negative z) ⟶ hyperboloid of 1 sheet
 two minus signs (z first) ⟶ hyperboloid of 2 sheets
 remove "1" ⟶ elliptic cone

 remove z2 ⟶ elliptic paraboloid (parabola holds term to first degree)

 x2 instead of minus ⟶ hyperbolic paraboloid (first x term changes sign)



Cone:  Elliptic Paraboloid:

Hyperbolic Paraboloid: 

horizontal cross-sections are ellipses, vertical cross-sections are parabolas

horizontal cross-sections are hyperbolas, vertical cross-sections are parabolas



3. Other 3D Coordinate Systems
Cylindrical Coordinates

Cylindrical coordinates directly extend polar coordinates to 3-space, with coordinates
consisting of (r, θ, z).

To convert from rectangular coordinates to cylindrical coordinates:
(r = √x2 + y2, tan θ = y

x
, z). To convert from cylindrical coordinates to rectangular

coordinates: (r cos θ, r sin θ, z).

Spherical Coordinates

Spherical coordinates consist of (ρ, θ, ϕ) with bounds of 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π.

Theta is azimuthal angle, measured counterclockwise from positive x-axis
Phi is polar angle, measured from positive z-axis to point



Cylindrical to Spherical: (r = ρ sin ϕ, θ = θ, ϕ = π
2 )



4. Vector-Valued Functions
Introduction

A vector-valued function is any function with scalar inputs whose outputs are vectors.

r(t) = f1(t)i + f2(t)j + f3(t)k

r(t) = ⟨f1(t),  f2(t),  f3(t)⟩

The output of a vector-valued function is a set of points forming a curve C with an
orientation (in increasing t). In this case, r is called the position vector or radius vector
for C.

Graphs

The graph of a vector-valued function is obtained by plotting the endpoints of the vector
r(t) starting on the origin for every domain value of t. In this way, the components of the
vectors which fulfill the function can form points.

The vector valued function may be broken into a set of parametrics for x/y/z.

x = f1(t),  y = f2(t),  z = f3(t)

At the same time, symmetric equations are derived from parametrics (
x = x0 + at, y = y0 + bt, z = z0 + ct):

t =
x − x0

a
=

y − y0

b
=

z − z0

c

Calculus of Vector-Valued Functions

Analogous Limits, Derivatives, and Integrals From Real-Value Functions

Limits/derivatives/integrals can essentially be "distributed" among the components of the
vector-valued function:

lim
t→a

r(t) = (lim
t→a

f1(t))i + (lim
t→a

f2(t))j + (lim
t→a

f3(t))k

The domain of the vector-valued function is the intersection of domains of its
component functions.
Two vector-valued functions may trace the same graph/orientation but can be
different from one another (e.g., traverse same route at dif. speeds)



r′(t) = f ′
1(t)i + f ′

2(t)j + f ′
3(t)k

∫ r(t) dt = ∫ f1(t) dt i + ∫ f2(t) dt j + ∫ f3(t) dtk

∫

b

a

r(t) dt = ∫

b

a

f1(t) dt i + ∫

b

a

f2(t) dt j + ∫

b

a

f3(t) dtk

Requirements:

Additionally, a vector-valued function is only continuous at point "a" if and only if all of its
components are also continuous at "a".

In all instances, the derivative of vector-valued function r has the same differentiation
rules as for a regular function f(x). The same applies for integration.

Geometry of Derivatives

If r is a vector-valued function, then the derivative of r is given by

r′(t) = lim
h→0

r(t + h) − r(t)

h

Let P be a point on the graph of a vector-valued function r, and let r(t0) be the position
vector from the origin to P. If r′(t0) exists and is nonzero, then r′(t0) is the tangent vector
to the graph of r at r(t0).

Additionally, r′(t) is orthogonal to the postion vector r(t) at all points if the curve of r(t)
lies on a sphere.

Extension to Dot and Cross Product

(r1 ⋅ r2)′ = (r′
1 ⋅ r2) + (r1 ⋅ r′

2)

(r1 × r2)′ = (r′
1 × r2) + (r1 × r′

2)

lim
t→a

r(t) exists if and only if the limit for all its components also exists

r is differentiable at some point t0 if and only if all its components are also
differentiable at t0

r is only integrable if and only if all its components are also integrable

Note: Rule also apply even if one function is scalar and the other is vector-valued

The line through P parallel to tangent vector is the tangent line to the graph of r

Order of crosses matter



Parametrization of Curves

The parametrization of vector-valued functions should be thought of as
position/velocity/acceleration regarding the original function, first derivative, and second
derivative. The parameter is usually t, time.

Whether a Vector-Valued Function is Smooth

A vector-valued function r(t) is smooth if:

There are many different parametrizations of curves, which all work as long as they have
the same range of C.

Composition of Parametrizations

For r2 = r1 ∘ g to be a smooth parametrization of C

For chain rule to be applicable to differentiate this composed function r2 = r1 ∘ g:

Parametrization of a Curve in Terms of Arc Length

The following takes the assumption of smooth curves.

Finding Arc Length of Parametric Curve If r(t), a ≤ t ≤ b, parametrizes the curve C, then
the arc length s of C can be written

s = ∫

b

a

∥r′(t)∥ dt

where |r′(t)| is

|r′(t)| = √

(

dx

dt
)

2

+ (

dy

dt
)

2

+ (

dz

dt
)

2

 The components of r(t) are differentiable (r′ is a continuous function defined at all
points in the domain of r)

 The derivative r'(t) does not equal the zero vector for any t in the given interval
If 3 components of the first derivative are zero at specific t value(s) then the
parametrization of the curve is not smooth

The range of the inner function must lie within the domain of the outer function.

Inner function must be differentiable at points where it is defined
Outer function must be differentiable at range of g(t)



The upper bounds of a/b represent the start/end points of the arc parameter (to find arc
length between 2 points).

Reparametrization by Arc Length Reparametrization describes the position based on
actual distance traveled along the curve from a starting point.

Process of Reparametrization:

Result: Arc length reparametrization in same direction as given line with reference point

ds

dt
= ∥r′(t)∥

Reversing the Direction of Parametrization For a parametrization r(t) on the interval
a ≤ t ≤ b, if we want to find a reverse parametrization g(τ), we need a transformation
where t = g(τ) such that the starting value of t = a corresponds to τ = b.

Unit Tangents, Normals, and Binormals

Unit Tangents

For two smooth parametrizations of curve C with the same orientation, their tangent lines
will be in the same direction but possibly different lengths.

The unit tangent vector describes the direction of the curve at a given point, with a
magnitude of 1.

Definition The tangent vector divided by its magnitude:

T(t) =
r′(t)

∥r′(t)∥

Note: T(t) should be found in such an order: r′(t), ∥r′(t)∥, T(t), and then plug in point t

Unit Normal Vector

 Find arc length function s(t)
Indefinite integral of r′(t)

 Find the inverse; get the original parameter "t" in terms of the arc length "s"
 Express the original curve (in terms of t) now in terms of s: r(t) ⟶ r(s)

r(t) is the position vector of the curve as a function of ( t ).
r′(t) is the derivative of the position vector, representing the velocity vector (the
direction of motion of the particle along the curve).
∥r′(t)∥ is the magnitude of the velocity vector.



The principal unit normal vector describes the direction in which the curve is bending at a
given point. It is perpendicular to the tangent line and points in the direction which the
3D curve will bend in (direction of concavity).

Definition The derivative of the unit tangent vector (analogous to second derivative)
divided by its magnitude:

N(t) =
T′(t)

∥T′(t)∥

Note: N(t) is only defined when T′(t) ≠ 0. If it is zero, that would mean a constant tangent
vector and a linear parametrization, which would have no curvature.

Binormal Vector

The binormal vector is perpendicular to both the tangent and normal vectors, completing
the orthonormal basis for the curve.

Definition:
The binormal vector is the cross product of both the tangent vector and the normal
vector, tangent to both

B(t) = T(t) × N(t) =
r′(t) × r′′(t)

∥r′(t) × r′′(t)∥
=

r′(s) × r′′(s)

∥r′′(s)∥

Osculating, Normal, and Rectifying Planes

Osculating Plane contains both tangent T(t) and normal N(t) (first/second unit
derivatives).

Normal Plane contains both normal N(t) and binormal B(t).

Rectifying Plane contains both tangent T(t) and binormal B(t).

Their equation are constructed through a point (at specified t value) and the normal
vector (which is whatever one is not included on the plane, since
tangent/normal/binormal are all orthogonal to one another).

T′(t) is the derivative of the unit tangent vector with respect to ( t ), representing the
change in direction of the tangent vector.
∥T′(t)∥ is the magnitude of T′(t).

magnitude of 1 since both T(t) and N(t) are 1 (thus only indicates direction)
indicates the axis of torsion



Curvature

Definition and Significance

Curvature is a scalar quantity that measures how sharply a curve bends at a given point.
It is how rapidly the tangent vector changes moving along the arc length of the curve.

κ(t) =
dT

ds
= ∥T′(s)∥

Note: Curvature's parameter is really arc length, not parameter t

Curvature of a Smooth 2D Parametric Curve

κ(t) =
|x′y′′ − y′x′′|

(x′2 + y′2)3/2

Curvature of a Plane Curve �Cartesian Coordinates)

κ(x) =
|d2y/dx2|

[1 + (

dy

dx )

2
]

3/2

Curvature of 3D Curve

κ(t = t0) =
∥T′(t0)∥

∥r′(t0)∥
=

∥r′(t0) × r′′(t0)∥

∥r′(t0)∥3

Interpretation

Osculating Circle

An osculating circle is the circle that "best fits" a curve at a give point. They share the
same tangent and curvature.

The curvature of a circle is always 1/r, so to find the osculating circle, use the point on the
curve and 1/r = κ.

Motion Along a Curve

Velocity

To analyze motion along a curve, it is necessary to know both its position and velocity at
that instant.

∥ ∥The larger the magnitude, the greater the change in tangent vector over a short
segment of the curve.



v(t) = r′(t) =
ds

dt
T(t)

Acceleration

The acceleration of a particle lies in the plane determined by T(t) and N(t) (tangential
and centripetal acceleration).

a(t) = v′(t) = r′′(t)

The definition in terms of tangential and centripetal acceleration:

a(t) =
d2s

dt2
T(t) + κ(t)(

ds

dt
)

2

N(t) = aT (t)T(t) + aN(t)N(t)

If a particle has position as a function of time t given by the smooth vector-valued
function r(t), then at each time t, the vectors v and a, and the scalars κ, aT , and aN  are
related by:

aT =
v ⋅ a

|v|
⇒ aT = aTT

aN =
|v × a|

|v|
⇒ aN = aNN

κ =
|v × a|

|v|3

Distance vs. Displacement

Distance Travelled

Arc Length = ∫

b

a

∥r′(t)∥

Speed is first derivative of displacement, equivalent to the product of speed with unit
tangent vector

aT (t) represents the tangential component of acceleration.
aN(t) represents the normal component of acceleration.
T(t) is the unit tangent vector.
N(t) is the principal normal vector.

aT  is the tangential acceleration.
aN  is the normal acceleration.
κ is the curvature of the particle's path.



Magnitude of Net Displacement Vector

Straight-Line Distance = ∫

b

a

r′(t)dt

This is the same formula as the arc length formula in 3-space, where it is the square
root of component derivatives squared
Integral of speed

∥ ∥

Integral of velocity
Alternatively, find Δr using r(b) - r(a) and determine its norm



1. Multivariate Functions
Introduction

Definition

A multivariable function is a function with more than one input variable.

Domain and Range

Domain� The set of all possible input values (tuples) for which the function is defined.

Range� The set of possible output values for the function.

Graphs

Level Curves �Contour Maps) Since it's difficult to plot some of these curves, level
curves are used to give a better idea of the shape of the multivariable function in 2D.

Level Curves (or Contour Lines) represent points where different inputs have a constant
output.

Sets in 2-Space and 3-Space

Types of Points

Interior Point

Commonly represented as f(x, y) for functions of two variables or f(x, y, z) for
functions of three variables.

For f(x, y) = √4 − x2 − y2, the domain is the set of points (x, y) such that x2 + y2 ≤ 4.
The maximum domain of a multivariable function with n variables is Rn, representing
a set of n-tuples of all numbers

Graph of f(x, y)� A surface in three-dimensional space representing points (x, y, z)

where z = f(x, y).
Example: For f(x, y) = x2 + y2, the graph is a paraboloid opening upwards.

For a function f(x, y), a level curve for constant k is a set of all points (x, y) such that
f(x, y) = k.
Example: For f(x, y) = x2 + y2, the level curves are circles x2 + y2 = k.



Boundary Point

Accumulation Point (or Limit Point)

Intervals and Their Types

A point p is an interior point of a set D if there exists a neighborhood around p that is
entirely contained within D.
Formally, there is a small radius r > 0 such that all points within this radius are in D.

A point p is a boundary point of a set D if, for every neighborhood around p, there are
points both in D and outside D.
Intuitively, a boundary point is on the "edge" of D and lies between points inside and
outside the set.

A point p is an accumulation point of a set D if every neighborhood around p contains
infinitely many points from D, no matter how small the neighborhood is.
If D has only a finite number of elements, it has no accumulation points.

Closed Interval� Includes all its boundary points. Denoted as [a, b].
Open Interval� Includes none of its boundary points. Denoted as (a, b).
Neither Open Nor Closed� A set D is neither open nor closed if:

D = R2 or D = R3 (depending on context).
D is the empty set ∅.



2. Partial Derivatives
Limits of Multivariable Functions

Definition

For f(x, y) = xy

x2+y2 :

Testing for the Existence of a Limit

Method 1� Converting to Polar/Spherical Coordinates Convert f(x, y) into polar
coordinates to rewrite the limit as limr→0. If the limit of f(x, y) exists and only depends on
r, then the limit exists and is independent of direction. If the limit varies with θ, then the
limit evaluates to something different from a different path.

Method 2� Evaluate Along Specific Paths

Evaluation of Limit

If continuous, directly plug in the coordinate that the variables are approaching. If above
methods for testing the existence of a limit reach a constant value for an existing limit,
then that is the evaluated limit.

The limit lim(x,y)→(a,b) f(x, y) is the value that f(x, y) approaches as (x, y) gets arbitrarily
close to (a, b).
The limit only exists if it holds for all paths approaching that specific point

Note: The path must actually lead to the point (a, b), and cannot simply approach
from any direction

Approaching (0, 0) along y = x: f(x,x) = x2

2x2 = 1
2

.
Approaching (0, 0) along y = −x: f(x, −x) = −x2

2x2 = − 1
2 .

Since the limits differ, lim(x,y)→(0,0) f(x, y) does not exist.

Typically, if the limit exists through checking with this method, it evaluates to 0

 Check along coordinate axes
 Try different paths like y = x or y = x2. Substitutions that lead to an equivalent degree

in the numerator and denominator are usually helpful.
Note: Not every path can be attempted. The path must be able to lead to the
point (x, y, z) that the limit is actually aproaching.



Finding Removable Discontinuities

Requirements:

Continuity of Multivariable Functions

Definition of Continuity

A function f(x, y) is continuous at a point (a, b) if:

Determining Continuity of a Multivariate Function

Theorem 1� If f1 and f2 are continuous functions, then any function formed by applying
the basic operations of addition, subtraction, multiplication, or division will also be
continuous due to the properties of limits.

Theorem 2� If g and h are single variable functions, g is continuous at x0, and h is
continuous at y0, then any function formed by applying the basic operations will also be
continuous.

Theorem 3� If g is a single variable function continuous at h(x0, y0) and h is a two-variable
function continuous at (x0, y0), then the composite function f(x, y) = g(h(x, y)) is
continuous at (x0, y0).

Partial Derivatives

Partial derivatives measure rate of change for one variable while holding all others
constant.

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0) − f(x0, y0)

h

∂f

∂y
(x0, y0) = lim

h→0

f(x0, y0 + h) − f(x0, y0)

h

Notation

 The limit of the function as x/y approaches x0/y0 exists

 Graph is not continuous at f(x0, y0), whether it's because f(x0, y0) does not equal the
limit or the point doesn't exist.

lim(x,y)→(a,b) f(x, y) = f(a, b)

limit exists, point exists, and the two are equivalent
continuity depends on whether the function approaches the same value from all
directions in the domain.



For f(x, y):

For f(x, y) = x2y + y3:

Higher-Order Partial Derivatives

Subscript and Partial Notation

Subscript Notation:

Partial Notation:

For f(x, y) = x2y + y3:

Mixed Higher Order Derivatives

If all mixed partials are continuous in a neighborhood, then all the mixed partials are
equal, regardless of the order they were taken in.

∂ 2f

∂x∂y
=

∂ 2f

∂y∂x

Chain Rule for 3 Dimensions

Application of Chain Rule

∂f
∂x

 or fx� Partial derivative with respect to x with all else constant
∂f
∂y

 or fy� Partial derivative with respect to y with all else constant

∂f
∂x

= 2xy
∂f
∂y

= x2 + 3y2

In subscript notation, the order of differentiation is from left to right.
For example, in fxy, the function is first differentiated with respect to x and then with
y

In partial derivative notation, the order of differentiation is from right to left.
For example, in ∂ 2f

∂y∂x , the function is first differentiated with respect to x and then
with y

∂ 2f

∂x2 = 2y
∂ 2f

∂y2 = 6y

∂ 2f

∂x∂y
= 2x



Let f be a function of x and y, where x and y are in terms of t. If everything is
differentiable at (x0, y0):

d

dt
f(x(t), y(t))

t=t0

= fx(x0, y0) ⋅ x′(t0) + fy(x0, y0) ⋅ y′(t0)

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

Usage in Implicit Differentiation

If the equation f(x, y) = c defines y implicitly as a differentiable function of x, and if ∂f
∂y

≠ 0

, then:

dy

dx
= −

∂f
∂x

∂f
∂y

.

Chain Rule for Multivariate Functions

∂

∂u
f(x(u, v), y(u, v)) =

∂f

∂x
⋅

∂x

∂u
+

∂f

∂y
⋅

∂y

∂u
,

∂

∂v
f(x(u, v), y(u, v)) =

∂f

∂x
⋅

∂x

∂v
+

∂f

∂y
⋅

∂y

∂v
.

Use the following tree to better understand components of the chain rule:∣
Also very convenient for implicit differentiation for function y of one variable x



3. Tangent Planes and Local Linear
Approximations
Local Linear Approximation for 3-Dimensional Space

A function f(x, y) is said to be differentiable at a point (x0, y0) if small changes in x and y
produce a change in f(x, y) that can be approximated by a linear function of dx and dy.

L(x, y) = f(x0, y0) +
∂f

∂x
(x − x0) +

∂f

∂y
(y − y0)

Total Differential

The total differential df represents the best linear approximation to the change in f(x, y)

for small changes in x and y. Generally, you are given a point P(x0, y0), and a point Q(x, y)

to approximate for using (x0, y0). If dx = x − x0 and dy = y − y0, then:

f(x, y) ≈ f(x0, y0) + Δdf

where,

Δdf =
∂f

∂x
(x − x0) +

∂f

∂y
(y − y0)

Defining and Finding the Tangent Plane

Suppose (x0, y0, z0) is a point on the surface S, and H is a plane containing (x0, y0, z0). H is
called a tangent plane to S at (x0, y0, z0) if, for every smooth curve C lying on S and
passing through (x0, y0, z0), the tangent line to C at (x0, y0, z0) lies in H.

Theorem. Let (x0, y0, z0) be any point on the surface z = f(x, y). If f is differentiable at
(x0, y0), then the surface has a tangent plane at (x0, y0, z0), and the equation of this plane
is

fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) − (z − f(x0, y0)) = 0.

Essentially a linear combination of the partial derivatives of f, weighted by the
infinitesimal changes in x and y.

All tangent lines at that point will lie in the tangent plane.
Point (x0, y0, z0) on plane, with z0 being f(x0, y0) .
Normal vector of tangent plane is ⟨fx(x0, y0), fy(x0, y0), −1⟩ for any surface in the form
z = f(x, y).



Similarly, if a surface is defined implicitly by an equation of the form F(x, y, z) = 0, then
the tangent plane to the surface at a point (x0, y0, y0) is given by the equation:

∂F

∂x
(x − x0) +

∂F

∂y
(y − y0) +

∂F

∂z
(z − z0) = 0

Finding Parametrics of Line Normal to Surface at Point (Intersection of
Surface and Tangent Plane)

(x, y, z) is any other point on the plane whereas (x0, y0, z0) is the point of tangency
(where the plane touches the surface)

 Use partial derivatives as the slope.
 Use point on the plane as point.



4. The Gradient and Directional Derivatives
The Gradient of a Function

The gradient of a differentiable function f(x, y, z) is a vector defined as:

∇f(x, y, z) = ⟨

∂f

∂x
,

∂f

∂y
,

∂f

∂z
⟩

Definition and Notation of the Directional Derivative

If f is differentiable at (x0, y0) and v is a nonzero vector in 2-space, then the
instantaneous rate of change of f at (x0, y0) along directional vector v is called the
directional derivative of f at (x0, y0) in the direction of v, and is denoted Dvf(x0, y0).

In the form z = f(x, y), the directional derivative is given by:

Dvf(x, y) = ∇f(x, y) ⋅
v

∥v∥
=

∂f

∂x

vx

∥v∥
+

∂f

∂y

vy

∥v∥
.

For a function f(x, y, z) and a direction vector v = (a, b, c), mathematically, the directional
derivative Dvf(x, y, z) of f at the point (x, y, z) in the direction of the vector v is:

Dvf(x, y, z) = ∇f(x, y, z) ⋅
v

∥v∥
=

∂f

∂x

vx

∥v∥
+

∂f

∂y

vy

∥v∥
+

∂f

∂z

vz

∥v∥

Using Gradients to Determin the Tangent Vector to Curve of Intersection

Find the gradients (vectors normal) to both surfaces. Crossing the gradients will return a
unique direction vector which will be tangent to the surface of intersection.

Geometric Significance of the Gradient

Direction of Steepest Change, Magnitude Being Steepest Slope Following from the
definition of the directional derivative, we are able to see that it is maximized when

Dot product of gradient of function with unit vector in direction of v
Note that only the direction of the direction vector matters; scaling it will not affect
the directional derivative

Scalar multiples also work, but it is the direction that matters and is unique.
Additionally, both T and −T work.



travelling in the direction of the gradient, and that the magnitude of the gradient itself is
the magnitude of the steepest slope.

At each point (x, y) where ∇f(x, y) ≠ 0, the gradient ∇f(x, y) gives the direction of the
maximum increase in slope of the surface z = f(x, y), and the rate of change is ∥∇f(x, y)∥.
Similarly, the steepest decrease in slope is the negative gradient −∇f(x, y) with the same
magnitude.

Relative Extrema or a Saddle Point If ∇f(x, y) = 0, then (x, y) is either a relative maximum,
relative minimum, or a "saddle point".

Orthogonal to Level Curves At Each Point on Curve A level curve is a set of all points
with the same elevation. To have the steepest change in elevation, the gradient will point
in a direction orthogonal to the level curve.

It is important to realize that this is taken from a specific point (x, y), in consideration
of the paths starting from that point.

A saddle point is where coming from one direction, the function is a relative
maximum, but from another, it is a relative minimum.



5. Extension to 3+ Variables
Differentiability and Continuity

Differentiability Suppose f is a function of n variables and its first partials exist at each
point in some n-dimensional open ball centered at (a1, … , an). If these partials are
continuous at (a1, … , an), then f is differentiable at (a1, … , an).

Continuity If f is a function of n variables, differentiable at (a1, … , an), then f is
continuous at (a1, … , an).

Chain Rule for Partial Derivatives

Each of the n Variables are Differentiable Functions of a Single Variable t If f is a
differentiable function of the n variables x1, … ,xn, and each of these are differentiable
functions of the variable t, then the composition f(x1(t), … ,xn(t)) is differentiable, and

d

dt
f(x1(t), … ,xn(t)) =

∂f

∂x1

dx1

dt
+ ⋯ +

∂f

∂xn

dxn

dt
=

n

∑

j=1

∂f

∂xj

dxj

dt
.

A More General Form for Any Number of t If f is a differentiable function of the n
variables x1, … ,xn, and each of these are differentiable functions of the m variables
t1, … , tm, then the composition f(x1(t1, … , tm), … ,xn(t1, … , tm)) is differentiable, and for
each i,

∂

∂ti
f(x1(t1, … , tm), … ,xn(t1, … , tm)) =

∂f

∂x1

∂x1

∂ti
+ ⋯ +

∂f

∂xn

∂xn

∂ti
=

n

∑

j=1

∂f

∂xj

∂xj

∂ti
.

Total Differentials

If f is a function of the n variables x1, … ,xn, and f is differentiable at (a1, … , an), then the
total differential of f at (a1, … , an), denoted df, is defined to be:

df =
∂f

∂x1
(a1, … , an)dx1 + ⋯ +

∂f

∂xn

(a1, … , an)dxn =
n

∑

j=1

∂f

∂xj

(a1, … , an)dxj.

Goodness of Approximation If, for any (x1, … ,xn), Δf = f(x1, … ,xn) − f(a1, … , an), and
for each i, dxi = xi − ai, then (appropriately interpreted):

Δf ≈ df, when dxi ≈ 0 for all i.

Think of df as a function of the weighted variables dx1, … , dxn.



Directional Derivatives and Gradients

Gradient

∇f(a1, a2, … , an) = ⟨

∂f

∂x1
(a1, a2, … , an), … ,

∂f

∂xn

(a1, a2, … , an)⟩

Directional Derivative

Duf(a1, … , an) =
n

∑

j=1

∂f

∂xj

(a1, … , an)uj = ∇f(a1, … , an) ⋅ u

Gradient is normal to the tangent plane of a level surface at point (x0, y0, z0).

Where u is a unit direction vector (to reduce into unit vector, magnitude is calculated
the same way).
Maximum and minimum directional derivatives remain the magnitude of gradient in its
direction.



6. 3D Extrema and Second Partials
Extrema of Functions of Two Variables

Determining Whether Extrema Exist on the Interval

Extreme Value Theorem If f(x, y) is defined and continuous on a closed and bounded
region R, then f has both an absolute maximum and an absolute minimum on R.

Critical Values A point (x0, y0) is called a critical point of the function f if ∇f(x0, y0) = 0 or
if one or both of the first partials does not exist at (x0, y0).

If f has an interior relative extremum at (x0, y0), and if fx and fy both exist at (x0, y0), then:

∇f(x0, y0) = ⟨0, 0⟩ (Both partials are zero.)

Finding Extrema

Proving whether a relative max/min is absolute max/min:

Second Partials Test

Determines whether a given point is an extremum and whether that is a maximum,
minimum, or saddle point.

The function may have either an interior or boundary relative extrema.

Every relative extremum of the function f occurs either at a boundary point of dom(f)

or at a critical point.
Not every critical point is necessarily a relative extremum (e.g., saddle point).

 Clarify the function f(x, y) and determine its domain and boundaries.
 Find all critical points by: 1� Setting partials to zero. 2� Finding when either partial is

undefined. 3� Finding critical points on boundary conditions [absolute extrema only].
 Classify each critical point using the Hessian determinant (second partials test):

D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))2. This is unnecessary when determining
absolute extrema. (skip to step 4�

 Compare function values.

 Check asymptotic behavior.
 Check against other critical points and boundaries.



Let D = fxx(x0, y0)fyy(x0, y0) − (fxy(x0, y0))2.

Case 1� If D > 0 and fxx(x0, y0) > 0, then f has a relative minimum at (x0, y0).
fyy(x0, y0) must also be positive. Slope along both x and y directions is
increasing.

Case 2� If D > 0 and fxx(x0, y0) < 0, then f has a relative maximum at (x0, y0).
fyy(x0, y0) must also be negative. Slope along both x and y directions is
decreasing.

Case 3� If D < 0, then f has a saddle point at (x0, y0).
Either fxx or fyy is negative.

Case 4� If D = 0, then the second partial test is inconclusive.



7. Lagrange Multipliers for Extrema
Concept

Lagrange multipliers are used to solve constrained optimization problems, where you
want to find the extrema of an objective function f(x, y, z) while following a
constraint/condition g(x, y, z) = 0.

∇f(x, y, z) = λ∇g(x, y, z)

Alternatively, define the Lagrangian as:

L(x, y, … , λ) = f(x, y, …) − λg(x, y, …)

To find the critical points, we take the partial derivatives of the Lagrangian and set them
to zero for a system of equations.

∂L

∂x
= fx − λgx = 0

∂L

∂y
= fy − λgy = 0

∂L

∂λ
= −g(x, y, …) = 0

Reasoning

Lagrange multipliers are used to avoid excessive substitution in constrained optimization.

The idea is that for any function f(x, y) in the real world, there will often be restrictions on
x and y for where it may go.

This last equation is the constraint itself.



The level curve f(x, y) = c must be tangent to g(x, y), because otherwise moving in one
direction along g(x, y) will increase or decrease the objective function. Therefore, all
gradients of the constraint function will be parallel to the gradients at the extrema of the
objective function.

Problem-Solving Procedure

The green surface (constraint) is a level curve.

 Determine both the objective function f(x, y) and the constraint function g(x, y) = 0.
 Set L(x, y, … , λ) = f(x, y, …) − λg(x, y, …) = 0.
 Solve the system by isolating λ in terms of other variables. Solve the system of

equations.
 Determine the critical points (x, y, z). Evaluate to determine whether they are local

maximums/minimums.
To classify, either compare with other evaluated function values or use
determinant of Hessian matrix.



1. Double Integrals (Iterated Integrals)
Finding Volume Under a Surface

Double Integral

Extending the concept of "area under the curve" to 3D, you can find the volume under a
surface by dividing it into infinitely many small parallelepipeds (rectangular prisms) and
summing up each one's volume.

Definition: If f is a function of two variables and is continuous and non-negative on the
region R in the xy-plane, then the volume of the solid enclosed between the graph of f
and the region R is defined to be:

V = lim
n→∞

n

∑

k=1

f(x∗
k, y∗

k)ΔAk = ∬
R

f(x, y) dA

where:

R is the region in the xy-plane,



Properties of Double Integrals

Evaluating the Double Integral (Volume Under a Surface)

The volume V  under a surface z = f(x, y) over a region R in the xy-plane is given by:

V = ∬
R

f(x, y) dA.

If the region R is rectangular, say a ≤ x ≤ b and c ≤ y ≤ d, the double integral can be
expressed as:

V = ∫
b

a

(∫

d

c

f(x, y) dy) dx, = ∫
d

c

(∫

b

a

f(x, y) dx) dy,

To solve the double integral, first integrate the inner integral with respect to x/y. Treat the
other variable as a parameter (fixed/held constant). Then, take that expression and
integrate it with respect to the second variable.

f(x, y) is the height of the surface at (x, y),
dA represents an infinitesimal area element in R (e.g., dx dy).

Additionally, the order of integration of the iterated integral is reversible so long as
the function f(x, y) is continuous over the region R.

Parentheses are used to show ordering, from inside to out.
Graphically, the inner integral limits will extend from the one end of the strip to
another. The outer integral limits will be the bounds in which these strips are summed
over.



Integration Techniques

Generalization to Non-Rectangular Regions

Type I Region

Type II Region

After evaluating the inner definite integral, we will get an expression in terms of the
other variable (to integrate with respect to).

 Reversal of order of integration.
 Factorize the integrand (use when f(x, y) = g(x)h(y) and bounds are constant), which

allows for separation of variables:

 Usage of symmetry to ease calculations when pluggin in bounds.

Definition: A type I region R is defined by the set:
R = {(x, y)|a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}

Condition: If f is continuous on R, then the double integral of f over R is given by:

∬

R

f(x, y)dA = ∫
b

a

∫

g2(x)

g1(x)
f(x, y)dydx

Definition: A type II region R is defined by the set:
R = {(x, y)|c ≤ y ≤ d,h1(y) ≤ x ≤ h2(y)}

Condition: If f is continuous on R, then the double integral of f over R is given by:

∬

R

f(x, y)dA = ∫
d

c

∫

h2(y)

h1(y)

f(x, y)dxdy

Note: Whichever variable the bounds are is whichever variable the integration is done
with respect to.



Reversing the Order of Integration & Changing the Bounds of Integration
(Fubini's Theorem)

Reversing the order of integration in a double integral involves interchanging the roles of
the variables in the integration process. This typically requires adjusting the bounds of
integration to accurately reflect the new order.

Steps:

Example: Reverse the order of integration for:

∫

1

0
∫

x

0
f(x, y) dy dx

Step 1� Visualize the Region

Step 2� Determine New Bounds

Imagine that the orientation of individual strips are rotated 90 degrees, and that they
are summed across a different axis/direction.
Note: the bounds are treated as y = … when integrating with respect to y, and x = …

when integrating with respect to x.

 Visualize the Region of Integration:
Sketch the region of integration described by the current bounds.
Identify the relationships between x and y that define the region.

 Determine the New Bounds:
Express the limits of one variable (e.g., x) as functions of the other variable (e.g.,
y).
Adjust the outer bounds to match the range of the independent variable in the
new order.

 Rewrite the Integral:
Swap the roles of dx and dy in the integral.
Update the bounds to reflect the new variable relationships.

The region of integration is defined by:
0 ≤ x ≤ 1

0 ≤ y ≤ x

This corresponds to the triangular region bounded by y = 0, x = 1, and y = x.

Rewrite the region in terms of y:
0 ≤ y ≤ 1 (outer bounds for y)



Step 3� Rewrite the Integral The new integral becomes:

∫

1

0
∫

y

0
f(x, y) dx dy

Polar Double Integrals

Introduction

Polar regions refer to the area between two rays θ = α and θ = β.

∫

β

α

∫

r(θ2)

r(θ1)
f(r, θ)  ⋅ rdrdθ

Evaluating Polar Double Integrals

Misc

Mean Value Theorem in 3D

The average value of a function f(x, y) over a region R is given by:

Average Value =
1

A(R)
∬

R

f(x, y) dA

Where:

0 ≤ x ≤ y (inner bounds for x)

 Convert the function integrand into polar form: x = rcos(θ), y = rsin(θ). Convert the
height function into polar form as well.

 Adjust the area element: Replace dA with r dr dθ.
 Describe the region of integration R in terms of polar coordinates, determining the

bounds of integration with r and θ.
 Evaluate the iterated integral, typically integrating with respect to r first and then θ.

A(R) is the area of the region R.
∬

R
f(x, y) dA is the double integral of f(x, y) over R, representing the volume under

the surface z = f(x, y) and above the region R.



Finding the Area of a Region

Double integrals are useful for finding the area of irregular or nonrectangular regions in
the plane. This approach involves integrating over a specified region, using the fact that
the integral of 1 over a region gives its area.

Region of Integration� A nonrectangular region in the plane can be defined by a
combination of boundary equations or inequalities.
Double Integral� The area of a region R is given by:

Area = ∬
R

1 dA



2. Integrating Parametrized Functions
Parametric Representations of Surfaces

Definition and Properties

Just as →r(t) = ⟨x(t), y(t), z(t)⟩ describes a curve in 3-space, →r(u, v) = ⟨(x(u, v), y(u, v), z(u, v)⟩

describes a surface in 3-space as a vector-valued function of two variables.

The vector-valued function →r(u, v) = ⟨(x(u, v), y(u, v), z(u, v)⟩ is said to be continuous if
each of its component functions (x(u, v), y(u, v), and z(u, v)) is continuous.

Partial Derivatives

If the vector-valued function →r(u, v) = ⟨(x(u, v), y(u, v), z(u, v)⟩, the partial derivatives of r
are defined as follows:

∂r

∂u
=

∂x
∂u

i +
∂y
∂u

j +
∂z
∂u

k

∂r

∂v
=

∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

Both ∂r
∂u

 and ∂r
∂v

 are 3-space vector-valued functions of two variables.

An alternative notation is:

Tangent Vector to the Constant Curve (Application of Partial Derivative)

Suppose the vector-valued function is given by:

→r(u, v) = ⟨(x(u, v), y(u, v), z(u, v)⟩

When v is fixed at (v0), the constant v-curve is parameterized as:

r(u, v0) = x(u, v0)i + y(u, v0)j + z(u, v0)k.

The tangent vector to this curve at (u0, v0) is given by:

d

du
[r(u, v0)]

u=u0

= ru(u0, v0)

∂r
∂u

= ru

∂r
∂v

= rv



Note: ru(u0, v0) is the tangent vector to a constant v-curve at point (u0, v0), and the
opposite is true for rv(u0, v0).

Determining the Equation of the Tangent Plane

A tangent plane H to a surface S at a point P  is a plane that contains all tangent lines to
smooth curves on S passing through P .

Let r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k parametrize a surface S. If:

Technical Remarks on Tangent Planes for Parametric Surfaces

We see how the function changes as v is held constant (thus the partial derivative
with respect to u). It is then evaluated at u0.

(x0, y0, z0) is a point on S corresponding to the input parameter (u0, v0), and
ru(u0, v0) × rv(u0, v0) = ai + bj + ck ≠ 0, then H, the tangent plane to S at (x0, y0, z0),
has the equation:

a(x − x0) + b(y − y0) + c(z − z0) = 0

 Observation: ru(u0, v0) and rv(u0, v0) are tangent vectors to smooth curves on S
passing through (x0, y0, z0).

If these vectors are non-zero, they must lie in the plane H.
 Normal Vector:

The cross product ru(u0, v0) × rv(u0, v0) = ai + bj + ck ≠ 0 defines a normal vector
to H.

 Point-Normal Form:
Since H passes through (x0, y0, z0) and has a normal vector n = ai + bj + ck, it can
be expressed in point-normal form:

a(x − x0) + b(y − y0) + c(z − z0) = 0

 Non-existence:
For some surfaces, there are points where no tangent plane exists (e.g.,
corner/cusp).
At such points, no plane contains all tangent lines to all smooth curves passing
through that point.

 Non-uniqueness:
For some surfaces, there are points where multiple tangent planes exist.

 Existence and Uniqueness for Differentiable Functions:



Principle Unit Normal Vector

Suppose r(u, v) parametrizes the surface S, and the point (x0, y0, z0) on S corresponds to
the parameter (u0, v0).

If ru and rv exist at (u0, v0) and ru(u0, v0) × rv(u0, v0) ≠ 0, then the principal unit normal
vector to S at (x0, y0, z0), denoted n(u0, v0), is given by:

n(u0, v0) =
ru(u0, v0) × rv(u0, v0)

∥ru(u0, v0) × rv(u0, v0)∥

Strategies for Parametrization & Eliminating Parameters

Surface Area Over a Region

Previously, we had only discussed the surface area of a surface of revolution:

∫

b

a

2πf(x)√1 + [f ′(x)]2 dx

Surface Area: Form of z = f(x,y)

Now, we move on more generally to consider a surface σ of the form z = f(x, y) defined
over a region R in the xy-plane.

If f(x, y) is differentiable at (x0, y0), then the graph of f has a unique tangent
plane at (x0, y0, f(x0, y0)).

 Uniqueness for Parametric Surfaces:
If r(u, v) parametrizes S, with r(u0, v0) = x0i + y0j + z0k, and ru(u0, v0) and rv(u0, v0)

are non-zero and non-parallel vectors, then:
There can be at most one tangent plane to S at (x0, y0, z0).

Assume that f has continuous first partial derivatives at the interior points of R. This
ensures the surface will have a nonvertical tangent plane at each interior point of R.
We subdivide R into rectangular regions by lines parallel to the x and y axes and
discard any nonrectangular portions that contain points on the boundary of R.



Let (xk, yk) be the lower-left corner of the kth rectangle Rk, and assume that Rk has area
ΔAk = ΔxkΔyk, where Δxk and Δyk are the dimensions of Rk.

The portion of the tangent plane that lies over Rk will be a parallelogram τk. This
parallelogram will have a vertex at Pk and adjacent sides determined by the vectors:

qk = (Δxk, 0,
∂z
∂x

Δxk) and rk = (0, Δyk,
∂z
∂y

Δyk)

Assume there are n rectangles labeled R1,R2, … ,Rn.

The portion of σ that lies over Rk will be some curvilinear patch on the surface that
has a corner at Pk(xk, yk, f(xk, yk)); denote the area of this patch by ΔSk.

 To
obtain an approximation of ΔSk, we will replace σ by the tangent plane to σ at Pk. The
equation of this tangent plane is:

z = f(xk, yk) + fx(xk, yk)(x − xk) + fy(xk, yk)(y − yk)



Computing the cross product yields

∥qk × rk∥ = = (−
∂z
∂x

i −
∂z
∂y

j + k)ΔxkΔyk

ΔSk ≈ (−
∂z

∂x
i −

∂z

∂y
j + k)ΔxkΔyk = √

(

∂z

∂x
)

2

+ (

∂z

∂y
)

2

+ 1 ΔAk

It follows that the entire surface area can be approximated as

S ≈
n

∑

k=1

√

(

∂z

∂x
)

2

+ (

∂z

∂y
)

2

+ 1 ΔAk

Problem-Solving Procedure:

Surface Area: Parametric Form

Let σ be a smooth parametric surface.

If the dimensions of Rk are small, then τk should provide a good approximation to the
curvilinear patch σk.
The area of the parallelogram τk is the length of the cross product of qk and rk. Thus,
we expect the approximation

ΔSk ≈ area τk = ∥qk × rk∥

to be good when $\Delta x_k$ and $\Delta y_k$ are close to 0.

∥

i j k

Δxk 0 ∂z
∂x Δxk

0 Δyk
∂z
∂y

Δyk

∥∥ ∥
If we assume that the errors in the approximations approach zero as n increases in
such a way that the dimensions of the rectangles approach zero, then it is plausible
that the exact value of S is

S = lim
n→+∞

n

∑

k=1

√

(

∂z

∂x
)

2

+ (

∂z

∂y
)

2

+ 1 ΔAk

S = ∬

R

√

(

∂z
∂x

)

2

+ (

∂z
∂y

)

2

+ 1 dA

 Find an expression in the form of z = f(x, y). Then, calculate ∂z
∂x

 and ∂z
∂y

.

 Understand the 2D region/area that small elements of the surface is being summed
over. Set these as the bounds for the double integral.



The surface area, S, of σ is defined by the double integral:

S = ∬

D

||ru(u, v) × rv(u, v)||dA

This surface is parametrized by the vector-valued function r(u, v).
The domain of r(u, v) is denoted by D.

Bounds of the iterated integral is the 2D region u/v that the surface is over. The order
doesn't matter according to Fubini's Theorem, which states that the order of
integration can be interchanged since it is a continuous function over a rectangular
domain.
Understand the surface as being divided up into tiny parallelogram approximations,
whose individual areas are found with the cross product and summed over the
domain.



3. Triple Integrals
Triple Integrals

Definition

A triple integral extends the concept of a double integral to three dimensions, integrating
a function f(x, y, z) over a 3D region E.

The triple integral is used to find the:

Volume of a 3D region: ∭
E
dV .

Mass of an object with variable density ρ(x, y, z): ∭
E
ρ(x, y, z) dV .

Average value of a function over a 3D region.

 Linearity:
∭

E
[af(x, y, z) + bg(x, y, z)] dV = a∭

E
f dV + b∭

E
g dV  for constants a, b.

 Additivity:
If E = E1 ∪ E2 (disjoint regions), then ∭E f dV = ∭E1

f dV + ∭E2
f dV .

 Comparison:
If f(x, y, z) ≤ g(x, y, z) over E, then ∭

E
f dV ≤ ∭

E
g dV .



Triple Integrals over General Regions

Let G be a simple xy-solid defined as follows:

If f(x, y, z) is continuous on G, then:

∭

G

f(x, y, z) dV =∬
R

[∫

g2(x,y)

g1(x,y)
f(x, y, z) dz]dA

Think of the inner limits to be from surface to surface, middle limits to be from curve to
curve, and outer limits to be point to point.

Changing the Order of Integration (Fubini's Theorem)

Constant Bounds, Rectangular Projection Region When all the limits of the region are
constants, the integration region is a rectangular box and the order of integration can be
changed freely without adjusting the bounds.

Changing the Order of Integration for General Cases If the limits are not constants, then
at least one limit is dependent on another variable.

We should seek to make the inner integrals as simple as possible since the outermost
integral is guarenteed to have constant bounds. For triple integrals, there are 6 possible
permutations for the order of integration �3 variables).

There are 3 types of solids: simple xy solids, simple yz solids, and simple xz solids. This
means that the projection of the solid onto their respective planes results in a simple,
well-defined shape.

Upper surface: z = g2(x, y)

Lower surface: z = g1(x, y)

Projection onto the xy-plane� A region R.

First identify the surface to surface for the innermost integral. Travelling down,
collapse into a 2�D region R.
Adjust the constraints from the equation accordingly (e.g., for a projection down onto
the xy plane, set z = 0 in the equation to see the relationship between x and y).
Continue solving as you would for a double integral.

The innermost bounds must be a function of the outer two variables (e.g., if dz is on
the inside, then the bounds will be a function of x and y).
The middle bound will be a function of one variable, which is the outermost variable.
The outermost bounds must become constants.



For easy integration, if the bounds result in a simple projection on the xy plane, it is a
simple xy solid and z should be the innermost variable to be integrated first. The same
concept applies to the 2 others.

Product Property for Triple Integrals Over a Rectangular Box

The product property states that if a function f(x, y, z) can be expressed as the product
of three single-variable functions, i.e., f(x, y, z) = f1(x) ⋅ f2(y) ⋅ f3(z), then the triple integral
over a rectangular box B simplifies to the product of three separate single-variable
integrals.

Conditions for Application:

Applications of Multiple Integrals

Mass and Density of a Lamina

Definition and Properties

Total Mass

Center of Mass/Gravity

Let B = [a, b] × [c, d] × [e, g] be a rectangular box. For f(x, y, z) = f1(x)f2(y)f3(z):

∭

B

f(x, y, z) dV = (∫

b

a

f1(x) dx)(∫

d

c

f2(y) dy)(∫

g

e

f3(z) dz)

 Rectangular Domain� The region of integration must be a rectangular box.
 Separability� The integrand must be expressible as a product of functions, each

depending on only one variable (x, y, or z).
 Integrability: f1(x), f2(y), and f3(z) must be integrable over their respective intervals.

A lamina is a thin, flat two-dimensional surface with mass but negligible thickness.
It is characterized by a density function σ(x, y), which represents the mass per unit
area at a point (x, y).

Homogeneous when composition is uniform; otherwise inhomogeneous.

The total mass M of the lamina is determined by integrating the density function over
the region R occupied by the lamina:

M = ∫ ∫
R

σ(x, y) dA



Definition and Properties

For objects located at discrete locations:

 In other words, for
each individual direction it's still a weighted average where it's the Mass

Mass of System × Position.

In general, if a body occupies a region D with density function ρ(r), the center of gravity ̄r
is given by:

r̄ =
∫∫∫

D
r ρ(r) dV

∫∫∫D ρ(r) dV

Center of Gravity for 2D Lamina

The center of gravity (or center of mass) of an object is the point where the entire
weight of the object is considered to be concentrated.
For any object with a continuous mass distribution, it is computed as a weighted
average of the positions of all the mass elements.



Given the density function σ(x, y) over the region R, the coordinates of the center of
gravity (x̄, ȳ) are:

x̄ =
∫∫R xσ(x, y) dA

∫∫

R
σ(x, y) dA

ȳ =
∫∫R y σ(x, y) dA

∫∫

R
σ(x, y) dA

Pappus' Theorem and The Centroid

The centroid of a geometric object is the average position of all the points in the shape. It
is the "geometric center" and is where the shape would balance perfectly if if had uniform
density.

Pappus' Centroid Theorem relates the surface area and volume of a solid of revolution to
the distance traveled by its centroid during rotation.

Theorem Statements

First Theorem �Volume):

Second Theorem �Surface Area):

The numerator in each formula represents the moment of the mass distribution about
the corresponding axis.
The denominator is the total mass of the lamina.
The fraction represents a weighted average, with the weight being the density at
that specific point in the region

It is particularly useful for computing volumes and surface areas without performing
complex integrations.

The volume V  of a solid generated by rotating a plane region of area A about an
external axis (in the same plane) is:

V = A ⋅ d

where $d$ is the distance traveled by the centroid of the region, 

typically given by $d = 2\pi R$, with $R$ being the distance from the 

centroid to the axis of rotation.



3-D Center of Gravity

Definition for Three-Dimensional Bodies

Coordinate Formulas

The coordinates (x̄, ȳ, z̄) of the center of gravity are:

x̄ =
∫∫∫V x ρ(x, y, z) dV

∫∫∫

V
ρ(x, y, z) dV

ȳ =
∫∫∫V y ρ(x, y, z) dV

∫∫∫V ρ(x, y, z) dV

z̄ =
∫∫∫V z ρ(x, y, z) dV

∫∫∫V ρ(x, y, z) dV

Determining the Location of Centroid

The coordinates (x̄, ȳ, z̄) of the centroid of a 3D shape are:

x̄ =
∭

V
x dV

∭V dV

ȳ =
∭

V
y dV

∭V dV

z̄ =
∭

V
z dV

∭

V
dV

Note: The centroid is at the same location as the center of gravity only when density is
uniform. Even when the density of the object is not uniform, it is still calculated using the
same formula as it is a geometric property only.

The surface area S of a solid of revolution obtained by rotating a curve of length L
about an external axis is:

S = L ⋅ d

with $d$ defined similarly as the distance traveled by the centroid of 

the curve.

For a solid occupying a region V  with a density function ρ(x, y, z), the center of gravity
(or center of mass) is calculated using triple integrals.



Triple Integrals in Cylindrical Coordinates

Cylindrical coordinates (r, θ, z) extend polar coordinates into three dimensions by adding
the height z.

A triple integral in cylindrical coordinates is written as:

∫ ∫ ∫

Region
f(x, y, z) dV = ∫

θ2

θ1

∫

r2

r1

∫

z2

z1

f(r cos θ, r sin θ, z) r dz dr dθ

where:

Triple Integrals in Spherical Coordinates

Spherical coordinates (ρ, θ,ϕ) describe a point in 3D space based on its radial distance
and two angles:

The conversion formulas between Cartesian and spherical coordinates are:

A triple integral in spherical coordinates is written as:

∫ ∫ ∫

Region
f(x, y, z) dV = ∫

θ2

θ1

∫

ϕ2

ϕ1

∫

ρ2

ρ1

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ) ρ2 sinϕdρ dϕ dθ

where:

r� The radial distance from the z-axis.
θ� The angle measured counterclockwise from the positive x-axis in the xy-plane.
z� The same as in Cartesian coordinates, representing height.

r1 ≤ r ≤ r2 represents the radial bounds,
θ1 ≤ θ ≤ θ2 represents the angular bounds,
z1 ≤ z ≤ z2 represents the height bounds.
The volume element in cylindrical coordinates is given by: dV = r dr dθdz

ρ� The radial distance from the origin.
θ� The azimuthal angle (same as in cylindrical coordinates), measured
counterclockwise from the positive x-axis.
ϕ� The polar angle, measured from the positive z-axis.

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ



Coordinate System Variables Volume Element

Cartesian (x, y, z) dx dy dz

Cylindrical (r, θ, z) r dr dθ dz

Spherical (ρ, θ,ϕ) ρ2 sinϕdρ dϕ dθ

Problem-Solving Procedure

ρ1 ≤ ρ ≤ ρ2 represents the radial bounds,
ϕ1 ≤ ϕ ≤ ϕ2 represents the polar angle bounds,
θ1 ≤ θ ≤ θ2 represents the azimuthal angle bounds.
The volume element in spherical coordinates is: dV = ρ2 sinϕdρ dϕ dθ

 Given two surfaces, set them equal to one another to determine curve of
intersection. If this curve of intersection maps neatly onto a specific plane, proceed
to determine appropriate boundaries of integration region.

 Determine whether there needs to be a change of coordinate systems.
 Parametrize the curve and then integrate via change of variables/Jacobian.



4. Change of Variables
Change of Variables in Multiple Integrals

Introduction

In single variable calculus, the substitution rule for definite integrals states that if f(x) is
continuous on [a, b], and we define a new variable:

then the integral transforms as:

∫

d

c

f(g(u))g′(u) du = ∫
b

a

f(x) dx

where g′(u) is the transformation factor.

In single variable calculus, the common integration technique of u-substitution is the
result of going from left >>> right.

However, some integrals may actually become easier going right >>> left. For example,
∫

√1 − x2 dx is complex, but if we used x = sin(u), then the integral becomes ∫ cos2(u) du,
which is much simpler.

This same principle motivates change of variables in multivariable calculus.

The Jacobian Matrix and Determinant

Purpose of the Jacobian

Definition of the Jacobian Matrix and Determinant The Jacobian matrix is a matrix
whose entries are the partial derivatives of the new coordinates with respect to the old
coordinates.

For a transformation T  given by x = g(u, v) and y = h(u, v), the Jacobian determinant is:

x = g(u), where g is differentiable,
g(c) = a and g(d) = b,

The Jacobian determinant acts as a scaling factor.
It ensures that the infinitesimal area (or volume) element is correctly transformed
from one coordinate system to another.
It helps preserve the integral's value under the transformation.



J(u, v) =
∂(x, y)

∂(u, v)
= =

∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u

For three variables, x = g(u, v,w), y = h(u, v,w), and z = k(u, v,w), the Jacobian
determinant is:

J(u, v,w) =
∂(x, y, z)

∂(u, v,w)
=

A Note Regarding Notation:

Properties of the Jacobian Determinant Due to the nature of the process, the Jacobian
determinants going either direction in the transformation are inverses of one another:

J(u, v) =
1

J(x, y)

Evaluating Multiple Integrals via Change of Variables

The general problem-solving procedure is:

Double Integrals

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣ ∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣
J(u, v) refers to the scalar multiplier necessary to transform from (u, v) to (x, y).

T (x, y) refers to the transformation applied onto (x, y), mapping it to a new
coordinate system: T (x, y) = (u(x, y), v(x, y)).

In partial form, ∂(x,y)
∂(u,v)  holds the new coordinates on top and old on bottom.

Each entry in the determinant will also have the partials of new w.r.t. old.

This is particularly helpful when you have u/v defined in x/y and need to find the
Jacobian determinant for transformation, but don't want to rearrange to have x/y
defined in u/v (also works the other way around).

 Identify the transformation and new bounds for the transformed region (make an
appropriate transformation based on integrand + boundary conditions).

 Calculate the determinant of the Jacobian matrix. Use inverse property if needed.
 Transform original integrand and multiply with scaling factor. Evaluate the multiple

integral.

Suppose we have a transformation T  from the uv-plane to the xy-plane, defined by:
x = g(u, v) and y = h(u, v).
The double integral of a function f(x, y) over a region R in the xy-plane can be
transformed into a double integral over a region S in the uv-plane as follows:



Note� Change the original integrand to be in the correct terms in addition to the scalar
transformation multiplier.

Triple Integrals

Multiple Transformations (e.g., (x, y) → (u, v) → (r, θ)� General Concept:

Example Problem: Evaluate the integral

∬

R

√16x2 + 9y2 dA

where R is the region enclosed by the ellipse (x2/9) + (y2/16) = 1.

The ellipse equation suggests the transformation:

Now, we compute the Jacobian:

∂(x, y)

∂(u, v)
= = = (3)(4) − (0)(0) = 12

∬

R

f(x, y) dA =∬
S

f(g(u, v),h(u, v))
∂(x, y)

∂(u, v)
du dv

∣ ∣

The absolute value of the Jacobian determinant ensures the area element is positive.

For a transformation T  from uvw-space to xyz-space, defined by: x = g(u, v,w),
y = h(u, v,w), and z = k(u, v,w).
The triple integral of a function f(x, y, z) over a region R in xyz-space can be
transformed into a triple integral over a region S in uvw-space:

∭

R

f(x, y, z) dV =∭
S

f(g(u, v,w),h(u, v,w), k(u, v,w))
∂(x, y, z)

∂(u, v,w)
du dv dw

∣ ∣

The absolute value of the Jacobian determinant ensures the volume element is
positive.

Start with an initial coordinate system, e.g., (x, y).
Apply a transformation to an intermediate coordinate system, e.g., (u, v).
Apply another transformation to a final coordinate system, e.g., (r, θ).
Each transformation has its own Jacobian determinant. Applying a sequence of
transformations will ultimately lead to a simpler region or integrand.

x = 3u (because x2/9 = u2)
y = 4v (because y2/16 = v2� This transforms the ellipse (x2/9) + (y2/16) = 1 into
u2 + v2 = 1, which is the unit circle.

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣ ∣

3 0

0 4

∣



Next, we transform the integrand:

√16x2 + 9y2 =√16(3u)2 + 9(4v)2 = √144u2 + 144v2 =√144(u2 + v2) = 12√u2 + v2

Now we have the integral in the uv-plane:

∬

R

√16x2 + 9y2 dA =∬
S

12√u2 + v2 ⋅ 12 du dv = 144∬
S

√u2 + v2 du dv

where S is the unit circle u2 + v2 ≤ 1.

Now, we switch to polar coordinates in the uv-plane:

The region S in polar coordinates is 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. The integrand √u2 + v2

becomes r. The integral becomes:

144∬
S

√u2 + v2 du dv = 144 ∫
2π

0
∫

1

0
r ⋅ r dr dθ = 144 ∫

2π

0
∫

1

0
r2 dr dθ

Evaluate the integral:

144 ∫
2π

0
[

1

3
r3

]

1

0
dθ = 144 ∫

2π

0

1

3
dθ = 48 ∫

2π

0
dθ

= 48[θ]2π
0 = 48(2π − 0) = 96π

Final Answer: The value of the integral is 96π.

Understanding Polar, Cylindrical, and Spherical Integrand Multipliers

Polar Coordinates

u = r cos θ

v = r sin θ

u2 + v2 = r2

du dv = r dr dθ

Transformation: x = r cos(θ), y = r sin(θ).
Jacobian:

∂(x, y)

∂(r, θ)
= = r(cos2(θ) + sin2(θ)) = r

Cylindrical Coordinates

∣

cos(θ) −r sin(θ)

sin(θ) r cos(θ)

∣
Transformation: x = r cos(θ), y = r sin(θ), z = z.
Jacobian:



If T  has vector form r(u, v) = x(u, v)i + y(u, v)j, then:

|J(u, v)| = ∥ru(u, v) × rv(u, v)∥

where ru(u, v) and rv(u, v) are viewed as vectors in 3-space with third component 0.

Finding the Outputs of a Transformation

If given a graph of (u, v) and the equations x = f(u, v) and y = g(u, v), how does one find
the new region S ?

Moving along the regions for the original (u, v) coordinates, (u, v) must follow a certain
conditions (e.g., u = 1 while v varies from 0 ≤ v ≤ 1). Taking advantage of this, rewrite the
equations for x and y using these limiting conditions moving along specific boundaries.

Example Problem: Sketch the image in the xy-plane of the set S under the given
transformation. S is the rectangle defined by 1 ≤ u ≤ 2 and 0 ≤ v ≤ π/2. The
transformation is:

Solution: We'll examine the images of the four sides of the rectangle S in the xy-plane:

Transform each side:

∂(x, y, z)

∂(r, θ, z)
= = r

Spherical Coordinates

∣

cos(θ) −r sin(θ) 0

sin(θ) r cos(θ) 0

0 0 1

∣
Transformation: x = ρ sin(ϕ) cos(θ), y = ρ sin(ϕ) sin(θ), z = ρ cos(ϕ).
Jacobian:

∂(x, y, z)

∂(ρ, θ,ϕ)
= = ρ2 sin(ϕ)

∣

sin(ϕ) cos(θ) −ρ sin(ϕ) sin(θ) ρ cos(ϕ) cos(θ)

sin(ϕ) sin(θ) ρ sin(ϕ) cos(θ) ρ cos(ϕ) sin(θ)

cos(ϕ) 0 −ρ sin(ϕ)

∣x = u cos v

y = u sin v

Side 1� u = 1, 0 ≤ v ≤ π/2

Side 2� u = 2, 0 ≤ v ≤ π/2

Side 3� v = 0, 1 ≤ u ≤ 2

Side 4� v = π/2, 1 ≤ u ≤ 2

Side 1 (u � 1�� x = 1 ⋅ cos v = cos v y = 1 ⋅ sin v = sin v Since 0 ≤ v ≤ π/2, this represents a
quarter-circle of radius 1 in the first quadrant, from �1, 0� to �0, 1�. We can recognize



Sketch: The image is the region bounded by: 4. A quarter-circle of radius 1 in the first
quadrant �Side 1�. 5. A quarter-circle of radius 2 in the first quadrant �Side 2�. 6. A line
segment on the x-axis from x = 1 to x = 2 �Side 3�. 7. A line segment on the y-axis from
y = 1 to y = 2 �Side 4�.

The region is a quarter-annulus (a quarter of the region between two concentric circles).
Final Answer: The image is the region in the first quadrant between the quarter-circles of
radius 1 and 2, bounded by the x and y axes.

this as x2 + y2 = 1 with x ≥ 0 and y ≥ 0.
Side 2 (u � 2�� x = 2 cos v y = 2 sin v Since 0 ≤ v ≤ π/2, this is a quarter-circle of radius
2 in the first quadrant, from �2, 0� to �0, 2�. This is x2 + y2 = 4 with x ≥ 0 and y ≥ 0.
Side 3 (v � 0�� x = u cos 0 = u y = u sin 0 = 0 Since 1 ≤ u ≤ 2, this is a line segment on
the x-axis from x = 1 to x = 2.
Side 4 (v = π/2): x = u cos(π/2) = 0 y = u sin(π/2) = u Since 1 ≤ u ≤ 2, this is a line
segment on the y-axis from y = 1 to y = 2.



1. Vector Fields
Vector Fields

A vector field is a fundamental concept in vector calculus that assigns a vector to each
point in a subset of space. It's like having an arrow at every point, where each arrow has
a specific magnitude and direction.

Definition

Representation/Notation

In R2, a vector field is typically represented as:

→F(x, y) = Fx(x, y)̂ı + Fy(x, y)̂ȷ

where Fx(x, y) and Fy(x, y) are scalar functions representing the x and y components of
the vector field, respectively, and ̂ı and ̂ȷ are the unit vectors in the x and y directions.

In R3, a vector field is typically represented as:

→F(x, y, z) = Fx(x, y, z)̂ı + Fy(x, y, z)̂ȷ + Fz(x, y, z)k̂

where Fx(x, y, z), Fy(x, y, z), and Fz(x, y, z) are scalar functions representing the x, y, and z
components of the vector field, respectively, and ̂ı, ̂ȷ, and k̂ are the unit vectors in the x, y,
and z directions.

Del and Other Related Operators

Definition and Properties

The Del operator, denoted by ∇, is a vector differential operator used in vector calculus.
It can be thought of as a vector of partial derivative operators. In three-dimensional
Cartesian coordinates, it is defined as:

Formally, a vector field on a region D in R2 �2-dimensional space) is a function →F  that
assigns to each point (x, y) in D a two-dimensional vector →F(x, y).
Similarly, a vector field on a region E in R3 �3-dimensional space) is a function →F  that
assigns to each point (x, y, z) in E a three-dimensional vector →F(x, y, z).



∇ =
∂

∂x
ı̂ +

∂

∂y
ȷ̂ +

∂

∂z
k̂

where ̂ı, ̂ȷ, and k̂ are the unit vectors in the x, y, and z directions, respectively.

Note that it is

Property� Linearity

Divergence (Scalar Output)

The divergence of a vector field →F = Fx ı̂ + Fyȷ̂ + Fzk̂ is a scalar function that measures the
"outwardness" of the vector field at a given point. It quantifies the magnitude of the
vector field's source or sink at that point. The divergence is defined as:

div  →F = ∇ ⋅ →F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

Curl (Vector Output)

The curl of a vector field →F = Fx ı̂ + Fyȷ̂ + Fzk̂ is a vector function that describes the
infinitesimal rotation of the vector field at a given point. It is defined as:

curl  →F = ∇ × →F = = (

∂Fz

∂y
−

∂Fy

∂z
)ı̂ − (

∂Fz

∂x
−

∂Fx

∂z
)ȷ̂ + (

∂Fy

∂x
−

∂Fx

∂y
)k̂

Laplacian (Scalar Output)

For any scalar functions f and g and constants a and b, the Del operator satisfies the
property of linearity.

∇(af + bg) = a∇f + b∇g

If ∇ ⋅ →F > 0, the vector field has a net outward flow at that point, acting as a source.
If ∇ ⋅ →F < 0, the vector field has a net inward flow at that point, acting as a sink.
If ∇ ⋅ →F = 0, the vector field is said to be solenoidal or divergence-free, indicating that
there is no net flow in or out of that point.

∣

ı̂ ȷ̂ k̂

∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣
The direction of ∇ × →F  indicates the axis of rotation of the vector field at that point.
The magnitude of ∇ × →F  represents the magnitude of the rotation.
If ∇ × →F = →0, the vector field is said to be irrotational, meaning there is no local
rotation at that point.



The Laplacian is the divergence of the gradient. It measures the difference between the
average value of a field in an infinitesimal neighborhood around a point and the value of
the field at that point.

For a scalar function ϕ(x, y, z), the Laplacian is a scalar function defined as:

∇2ϕ = ∇ ⋅ (∇ϕ) =
∂ 2ϕ

∂x2
+

∂ 2ϕ

∂y2
+

∂ 2ϕ

∂z2

The Laplacian of a vector function →F(x, y, z) is defined as:

∇2
→F =

∂ 2Fx

∂x2
î +

∂ 2Fy

∂y2
ĵ +

∂ 2Fz

∂z2
k̂

Interpretations:

Additional Notes

In order words, it is the sum of the second partials with respect to each variable in
ϕ(x, y, z).

In other words, it is the sum of second partials for each component of the vector
function with respect to that component.

If ∇2ϕ > 0 at a point, the value of ϕ at that point is less than the average value of ϕ in
the surrounding infinitesimal region.
If ∇2ϕ < 0 at a point, the value of ϕ at that point is greater than the average value of ϕ
in the surrounding infinitesimal region.
If ∇2ϕ = 0, the value of the function at that point is approximately equal to the
average value of the ϕ in the neighborhood.
Note� Unlike the second derivative/partials test, the Laplacian is a differential
operator that provides information about the function's shape but does not
necessarily determine the location of local maxima/minima.

Divergence and curl are intrinsic properties of a vector field. This means that
regardless of the coordinate system, the computation of div and curl will return the
same results.
The Laplacian of a vector field is related to the gradient and divergence through the
vector identity:

∇2
F = ∇(∇ ⋅ F) − ∇ × (∇ × F)



2. Line Integrals
Line Integral of a Scalar Field

A line integral is a type of integral where a function is evaluated along a curve rather than
over an interval or region.

A scalar line integral, geometrically, is the area of the sheet formed by the height of the

scalar field function along a curve C. 

Definition and Properties

The line integral of a scalar function f(x, y, z) along a curve C parameterized by
r(t) = ⟨x(t), y(t), z(t)⟩ for a ≤ t ≤ b with respect to arc length is given by:

∫

C

f(x, y, z) ds = ∫

b

a

f(x(t), y(t), z(t)) r
′(t) dt

where |r′(t)| = √

(

dx
dt )

2
+ (

dy
dt )

2
+ (

dz
dt )

2 is the magnitude of the derivative of the position

vector.

Properties:

Evaluating a Line Integral

∣ ∣
ds = √

(

dx
dt )

2
+ (

dy
dt )

2
+ (

dz
dt )

2
dt

∫C(f + g) ds = ∫C f ds + ∫C g ds.
∫C k ⋅ f ds = k ∫C f ds, where k is a constant.
If a curve C is composed of two subcurves C1 and C2, then ∫C f ds = ∫C1

f ds + ∫C2
f ds.

 Determine an appropriate parametrization the curve. Express x, y, and z in terms of t,
with bounds for t.

 Use the parametrization to express the integrand and differential in terms of t and dt.
 Evaluate the line integral.



Line Integrals with Respect to x, y, and z

Line integrals can also be defined with respect to x, y, or z. These sum up elements of the

sheet in a single direction. 

The line integral with respect to x is given by: ∫C f(x, y, z) dx = ∫

b
a f(x(t), y(t), z(t)) dx

dt dt. The
line integral with respect to y is: ∫C f(x, y, z) dy = ∫

b

a f(x(t), y(t), z(t)) dy
dt dt. The line integral

with respect to z is: ∫
C
f(x, y, z) dz = ∫

b

a
f(x(t), y(t), z(t)) dz

dt
dtd

Parametrization Independence

Line Integrals w.r.t. Arc Length Along C �Scalar Function) Line integrals of a scalar
function with respect to arc length along C is independent of the parametrization of C
and the orientation of C.

Line Integrals w.r.t. x/y/z Along C �Scalar Function) Line integrals of a scalar function
with respect to x/y/z along C is independent of the parametrization of C.

Line Integral of a Vector Field

Definition and Properties

Independence of Parametrization� If a line integral is rewritten as
∫

C
f(x, y, z) ds = ∫

b

a
f(x(t), y(t), z(t))∥r

′(t)∥ dt, each element is geometrically the same,
whether it be the values of f at (x, y, z) or the different representation of arc length
geometrically.
Independence of Orientation of C� A curve C can be traversed in 2 ways. However,
again, sub-arc lengths are still the same and again f is the same.

Independence of Parametrization� Again, parametrization does not affect the
geometries, so it is evaluated the same.
Influenced by Orientation of C� A reversal of traversal path is denoted as −C. Due to
this reversal, path elements in the x direction becomes negative, changing the sign of
the reversed traversal line integral: ∫

−C
f(x, y, z) dx = − ∫

C
f(x, y, z) dx.



Given a vector field →F(x, y, z) and a smooth curve C parameterized by
→r(t) = ⟨x(t), y(t), z(t)⟩ for a ≤ t ≤ b, the line integral of →F  along C is:

∫

C

→F ⋅ d→r = ∫

C

⟨Fx,Fy,Fz⟩ ⋅ ⟨dx, dy, dz⟩ = ∫

b

a

→F(→r(t)) ⋅
d→r

dt
dt

Properties:

Fundamental Theorem of Line Integrals

The following Fundamental Theorem of Line Integrals applies only to conservative vector
fields.

If →F  is a conservative vector field, meaning →F = ∇ϕ for some scalar function ϕ (called the
potential function), and C is a smooth curve from point (x0, y0) to point (x1, y1), then:

∫

C

→F ⋅ d→r = ∫

(x1,y1)

(x0,y0)
∇ϕ ⋅ d→r = ϕ(x1, y1) − ϕ(x0, y0)

The expression ∫C →F ⋅ d→r represents the integral of the tangential component of →F
along the curve C. Fx and the rest of the components are parametrized in terms of t.
Since Fx and the rest of the components are parametrized in terms of t,
d→r
dt = ⟨ dx

dt , dy
dt , dz

dt ⟩, so then for each component's differential, dxdt dt = dx.
This line integral represents work.

Linearity: ∫C(a →F + b →G) ⋅ d→r = a ∫C
→F ⋅ d→r + b ∫C

→G ⋅ d→r, where a and b are constants.
Path Reversal� If −C is the curve C traversed in the opposite direction, then
∫

−C
→F ⋅ d→r = − ∫

C
→F ⋅ d→r (influenced by orientation).

Path Additivity� If C is composed of two curves C1 and C2 joined end-to-end, then
∫

C
→F ⋅ d→r = ∫

C1

→F ⋅ d→r + ∫

C2

→F ⋅ d→r.

This theorem states that the line integral of a gradient field depends only on the
endpoints of the curve and not on the path taken.
If the curve C is closed, that is (x1, y1) = (x0, y0), then ∫C →F ⋅ d→r = 0 for any gradient
field →F .



The following statements are equivalent (either all true or all false):

Conservative Vector Fields

Definition and Properties

A vector field →F  is said to be conservative if it is the gradient of some scalar function,
called a potential function.

Key Properties:

Note� Beware of overgeneralization on iii. Just because the line integral over two
different curves that have the same beginnings and endings yield equal values
doesn't mean that →F  is conservative.

That is, →F = ∇f for some scalar function f. More often, f is denoted as a potential
function ϕ(x, y, z).



Simple Curves and Simply Connected Regions

A simple curve is a continuous curve in space that does not intersect itself, except
possibly at its endpoints.

A region D is simply connected if it is "hole-free". That is, every closed curve within D
can be continuously deformed into another curve, down to a point, while remaining
entirely within D.

Finding the Potential Function of a Conservative Vector Field

A vector field F is said to be conservative if there exists a scalar potential function ϕ
such that F = ∇ϕ(x, y, z).

Integration of Partial Derivatives Let F(x, y) = ⟨Fx,Fy⟩. Then if F = ∇ϕ, by definition,
∂ϕ
∂x = Fx and ∂ϕ

∂y = Fy.

Path Independence� The line integral of →F  between two points is independent of the
path taken. The line integral depends only on the endpoints.

The Fundamental Theorem of Line Integrals may be used to evaluate such path-
independent line integrals.
The direction of path traversal still matters.

Closed Line Integral is Zero� The integral of →F  over any closed loop/path is always
zero. Notably, this is not necessarily a circle, but instead that the line integral around
every possible closed path in that region must be zero, regardless of the shape.

∮

→F ⋅ d→r = 0

The curl of →F  is zero everywhere in a simplyconnected domain: ∇ × →F = 0.
This is an if and only if condition. Therefore, similarly, if ∇ × →F  and the field is
defined on a simply connected domain, then →F  will definitely be a conservative
vector field.

Thus, a shape like an annulus is not simply connected.

 Integrate Fx(x, y) with respect to x: ϕ(x, y) = ∫ Fx(x, y) dx + g(y), where g(y) is an
unknown function of y.

 Differentiate ϕ with respect to y and set it equal to Fy(x, y):
∂ϕ
∂y

= ∂
∂y
(∫ Fx(x, y) dx + g(y)) = Fy(x, y).

 Solve for g(y) from this equation.
 Combine the results to obtain the full potential function ϕ(x, y). �An arbitrary constant

C may appear, which does not affect the gradient. Any convenient value may be



Conservative Field Test Theorem

One key property of conversative vector fields is that its curl is zero in a simply-
connected domain. This is an "if and only if" statement, meaning both directions of the
implication holds true. Therefore, a vector field having zero curl in a simply-connected
region is sufficient to show that the vector field is conservative (at least in that region).

In 3D, the curl of a vector field F = ⟨Fx,Fy,Fz⟩ is a vector field defined as
∇ × F = ⟨

∂Fz

∂y −
∂Fy

∂z , ∂Fx

∂z − ∂Fz

∂x ,
∂Fy

∂x − ∂Fx

∂y ⟩ = →0. For a 2D vector field (a vector field over

an xy plane), F = ⟨P(x, y),Q(x, y)⟩, the curl simplifies to curl F = ∂Q
∂x

− ∂P
∂y

= 0 for a
conservative field over a simply-connected region.

Note� It is well known that all inverse-square fields in the form F(r) = k r

|r|3  are
conservative.

Closed Curves and Closed Line Integrals

Definition and Properties

A closed line integral (also called a contour integral) is an integral taken over a closed
curve. Mathematically, if C is a closed curve and F is a vector field, the closed line
integral is written as ∮

C
F ⋅ dr, where F = Fx(x, y)̂i + Fy(x, y)ĵ is a vector field.

This integral measures how much the vector field flows along the path C. If C encloses
some area, the behavior of the vector field inside can often be analyzed using Green’s
Theorem.

Note� The only conditions are that the region D must be simply connected, closed, and
oriented positively + the vector field has continuous partial derivatives for each of its
derivatives within/on the region. The vector field does not need to be conservative.

Evaluating Closed Line Integrals Without Green's Theorem

plugged in for C.)

Succintly: If a continuously differentiable vector field F on an open, simply connected
region D satisfies ∇ × F = 0, then F is conservative on D. Conversely, if F is
conservative on D, then ∇ × F = 0 in D.

In fact, Green's Theorem is useful in cases when the curl is nonzero; if the vector field
is conservative, the curl becomes zero.



Green's Theorem for Simply Connected Regions

Green's Theorem relates a line integral around a simple closed curve C to a double
integral over the plane region D enclosed by C. Intuitively, it equates the circulation along
the boundary of a region (line integral) with the cumulative rotation/curl within that
region (double integral of the curl).

Theorem Statement� Let C be a positively oriented, piecewise-smooth, simple closed
curve in the plane, and let D be the region bounded by C. A vector field →F(x, y) in two
dimensions can be written as F(x, y) = ⟨P(x, y),Q(x, y)⟩ and dr = ⟨dx, dy⟩. If P(x, y) and
Q(x, y) have continuous partial derivatives on an open region that contains D, then

∮ F ⋅ dr = ∮

C

(P dx + Qdy) = ∬

D

(

∂Q

∂x
−

∂P

∂y
) dA

Corollaries Corollary 1� Computing the area of a planar region whose boundary is known
(particularly when the boundary C is easier to parametrize than describing the region R
itself).

The right side of Green's Theorem becomes equivalent to Area(R) when ∂Q
∂x − ∂P

∂y = 1.
Working backwards, an easy result is P(x, y) = − y

2  and Q(x, y) = x
2 , so that ∂Q

∂x = 1
2  and

∂P
∂y

= − 1
2

.

Area(R) =
1

2
∮

C

(x dy − y dx)

Corollary 2� Green's Theorem also shows that if a vector field has zero curl in a simply
connected region, its line integral around any closed curve in that region is also zero.
�This is a property of conservative vector fields, but Green's Theorem also shows this
mathematically.)

 Parametrize the Curve C� Write a parametrization r(t) = ⟨x(t), y(t)⟩ for t ∈ [a, b] such
that it describes one full traversal of C.

 Compute the Integrand� Substitue x(t) and y(t) into F, and then calculate
F(x(t), y(t)) ⋅ ⟨x′(t), y′(t)⟩.

 Integrate from t = a to t = b: ∮C F ⋅ dr = ∫

b

a [F(x(t), y(t)) ⋅ r
′(t)] dt.

The notation ∮C denotes that the curve C is closed and positively oriented
(counterclockwise).
When it is a conservative vector field, this form is literally the closed line integral of a
total differential.
The curl is the 

(

∂Q
∂x − ∂P

∂y ) integrand.



In other words, if ∂Q
∂x − ∂P

∂y = 0, the integrand of the right side of Green's Theorem is zero
and therefore the closed line integral ∮C(P dx + Qdy) = 0.

A Generalized Green's Theorem for Multiply Connected Regions

Green's Theorem, in its basic form, relates a line integral around a simple closed curve C
to a double integral over the region R that C encloses. The generalized form extends this
to regions with "holes," or more precisely, regions that are not simply connected.

Theorem Statement� If R is a region in the plane with a boundary that consists of a finite
number of simple closed curves, and if P  and Q have continuous first-order partial
derivatives on an open region that contains R, then the generalized form of Green's
Theorem can be stated as:

∮

C0

(P dx + Qdy) −
n

∑

i=1

∮

Ci

(P dx + Qdy) = ∬

R

(

∂Q

∂x
−

∂P

∂y
)dA

where

Intuitively, when you consider a region with holes, the line integrals along the inner
boundaries are subtracted because their orientations are opposite to that of the outer
boundary. This can be thought of as the circulation around the holes "canceling out" part
of the circulation induced by the outer boundary.

Note 1� For Green's Theorem to by applied to multiply-connected regions, the outer curve
must be oriented counterclockwise (positively) while the inner curves surrounding the
holes must be oriented clockwise (negative). Note 2 �Shortcut)� If the integrand is a
constant value, then the line integral over the closed loop will be that constant multiplied
with the area of the region (after subtracting the holes).

Stokes' Theorem

Stokes' Theorem generalizes Green's Theorem to three dimensions

∮

∂S
F ⋅ dr = ∬

S

(∇ × F) ⋅ n̂ dS

curl becomes a vector quantity in three dimensions

C0 is the outer boundary of R, oriented counterclockwise.
C1,C2, … ,Cn are the inner boundaries (the "holes") of R, oriented clockwise.



3. Surface Integrals
Scalar Surface Integrals

Definition and Properties

The surface integral takes summing up values over a flat region (e.g., "heights" via
functions over the xy-plane) and extends it to curved surfaces in 3-space. Now, instead,
we are dividng up a surface into tiny patches and assigning each patch in space a scalar
weight, which is a function f(x, y, z) multiplied with the patch's area.

Essentially, it is a double integral with bounds determined by the parametrized surface
(e.g., in terms of u, v), with an area transformation element dS. The key to solving surface
integrals is to collapse a 3D problem into a 2D one. The local surface area scaling factor
occurs as an infinitesimal rectangular area dudv stretches when mapped onto a curved
surface in R3.

Let σ be a smooth parametric surface parametrized by the vector equation
r(u, v) = ⟨x(u, v), y(u, v), z(u, v)⟩, where (u, v) varies over some region R in the uv-plane. If
f(x, y, z) is a continuous function on σ, then the surface integral is:

∬

σ

f(x, y, z) dS = ∬

R

f(x(u, v), y(u, v), z(u, v))||ru(u, v) × rv(u, v)|| dA

Relation to Surface Area The surface integral is an extension of the double integral to
find surface area. That is, it is a more generalized form with function f(x, y, z); the double
integral to find surface area is simply the surface integral with f(x, y, z) = 1.

S = ∬

D

||ru(u, v) × rv(u, v)||dA

Choosing Parametrization & Problem-Solving Framework

When given a surface like a plane, it's easiest to find the intercepts and see the surface
as the triangle in 3-space connecting those three points.

There are two common approaches:

||ru(u, v) × rv(u, v)|| is the Jacobian determinant for the local area transformation. That
is, dS = ||ru(u, v) × rv(u, v)||dudv.
For the special case where f(x, y, z) = f(x, y, g(x, y)), the transformation factor

becomes dS = √

(

∂g
∂x )

2
+ ( ∂g

∂y )
2

+ 1 dA.



Problem-Solving Procedure:

Vector Surface Integrals (Flux Across Surfaces)

Flux is a concept in quantifies the "flow" of a vector field across a surface. For example, it
measures the net rate at which the quantity represented by the vector field (e.g., fluid,
electric field lines) passes through the surface.

Definition and Properties

Intuitively, imagine a vector field F  representing the velocity of a fluid in space. If we
place a surface S (like a net) within this fluid, the flux of F  across S represents the net
volume of fluid passing through the surface per unit time.

 The surface is given as a graph, like for example z = g(x, y). Then,

dS = √1 + ( ∂f
∂x
)

2
+ ( ∂f

∂y
)

2
dx dy. You are essentially collapsing the surface into the xy-

plane and can rewrite the integrand as f(x, y, z) = f(x, y, g(x, y)).
 Use (u, v) to parametrize both f(x, y, z) and the surface σ. After parametrizing the

surface, figure out the bounds as well as the area element dS.

 Choose an appropriate parametrization. Common options include using polar or using
2D coordinates (e.g., x & y). This will determine whether you use approach 1 or 2.

 Now determine the three key pieces of information: the bounds, the area scale factor
dS, and the parametrized weight f(x(u, v), y(u, v), z(u, v)).

 Bounds� This will depend directly on the surface σ. For example, if the surface is
boxed within the bounds x = a, x = b, z = c, z = d, then it may be easiest to use
these given bounds and project the surface onto the xz-plane (adjusting the
equation of the surface to be y(x, z)). At other times, you'll need to pick u, v such
that r(u, v) covers every single point on surface σ.

 Scale Factor� In general, dS = ∥ru × rv∥ du dv, with the special case of

dS = √1 + ( ∂f
∂x
)

2
+ ( ∂f

∂y
)

2
dx dy.

 Integrand/Weight� Substitute u/v in for f(x, y, z) → f(x(u, v), y(u, v), z(u, v)).

 Evaluate the double integral.

If the vector field F  is largely perpendicular (normal) to the surface, the flow through
the surface is high.
If the vector field F  is largely parallel (tangent) to the surface, the flow through the
surface is low.
The direction matters: flow in one direction across the surface can cancel out flow in
the opposite direction.



The formal definition is as follows� The flux of a vector field F(x, y, z) across an oriented
surface σ with unit normal vector field N(x, y, z) is defined by the surface integral:

Φ = ∬

σ

F(x, y, z) ⋅ N(x, y, z) dS

Role of Surface Orientation

To define flux, the surface σ must be orientable. An orientable surface is one for which
we can consistently define a continuous unit normal vector field N at every point p ∈ σ.

There are two scenarios:

Computation via Parametrization

If the surface σ is parametrized by a function r(u, v) for (u, v) in a domain D, the
calculation proceeds as follows:

If the orientation is reversed, N(x, y, z) changes sign, and so flux also changes sign.
At times, it will be easier to compute N(x, y, z) by finding the gradient and dividing by
its magnitude.

This choice of N defines an orientation for the surface, effectively distinguishing its
two sides (e.g., "inside" vs. "outside", or "up" vs. "down").

For non-orientable surfaces like the Möbius strip, there is no consistent way to
define a "through" direction globally, making the standard definition of flux
problematic.

 The surface is not parametrized ⟶ orientation is determined by the sign of its
gradient.

 The surface is parametrized ⟶ orientation is determined by ru × rv.
For the special case of collapsing onto the xy-plane or some other equivalent
(when z = g(x, y)), n dS becomes ⟨−zx, −zy, 1⟩ for upward-facing normals.

Compute the tangent vectors: ru = ∂r
∂u  and rv = ∂r

∂v .
Compute the normal vector to the surface (not necessarily unit length): ru × rv.

Note� This is because N(x(u, v), y(u, v), z(u, v)) = ru×rv
∥ru×rv∥

 and dS = ∥ru × rv∥ dA.
Multiplying together cancels the ∥ru × rv∥, becoming F(r(u, v)) ⋅ (ru × rv).

The flux integral is:

Φ = ∬

D

F(r(u, v)) ⋅ (ru × rv) dA



Note on Signs� The orientation of the unit normal is important. If the problem specifies
one or the other, ensure that the sign on k̂ is correct.

Flux and Closed Surfaces (Divergence/Gauss's Theorem)

Theorem Statement� Let E be a simple solid region in R3 whose boundary surface S is
piecewise smooth and has a positive (outward) orientation. Let F be a vector field whose
component functions have continuous first-order partial derivatives on an open region
containing E. Then:

Φ = ∬

S

F ⋅ n dS = ∭

E

(∇ ⋅ F) dV

Conditions for Applicability

Divergence and Flux Density

The net outward flux density is the flux per unit volume at a point. This definition gives
the divergence of a vector field F physical significance/meaning.

Consider a small sphere G of volume vol(G) centered at a point P0.

The total outward flux Φ(G) through the surface σ(G) of the sphere is:

Φ(G) = ∬

σ(G)
F ⋅ n dS = ∭

G

(∇ ⋅ F) dV

If ∇ ⋅ F is approximately constant near P0, then:

Φ(G) ≈ (∇ ⋅ F(P0)) vol(G)

The vector field F must have continuous first-order partial derivatives in a region
containing E. This ensures that the divergence ∇ ⋅ F is well-defined and integrable.
The region E must be a simple solid region, often referred to as a regular region or an
elementary region. This generally means it's a bounded solid that can be described
simultaneously in Cartesian, cylindrical, or spherical coordinates without breaking it
into too many pieces.
The boundary surface S must be piecewise smooth and closed. Closed means it
completely encloses the volume E. Piecewise smooth means it consists of a finite
number of smooth surfaces joined together.
The orientation of the surface S must be the positive (outward) orientation. The
normal vectors n must point away from the enclosed volume E.



Rearranging gives:

∇ ⋅ F(P0) = lim
vol(G)→0

Φ(G)

vol(G)

Gauss's Law for Inverse-Square Fields

Stokes' Theorem

Stokes' Theorem applies to an open surface with a closed boundary loop. For example,
imagine a paraboloid: it is an open surface and it has a circle/ellipse at one end.

The theorem links the curl of a vector field over an oriented surface S with the line
integral of the vector field over boundary curve C of the surface.

Theorem Statement� Let S be an oriented, piecewise-smooth surface that is bounded by
a simple, closed, piecewise-smooth boundary curve C with positive orientation relative to
the surface's orientation. Let F be a vector field whose components have continuous first
partial derivatives on an open region in R3 containing S. Then, Stokes' Theorem states:

∮

C

F ⋅ dr = ∬

S

(∇ × F) ⋅ n dS

Components and Conditions

Vector Field F� This is a vector field, typically denoted as
F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k. For Stokes' Theorem to apply, the
component functions P ,Q,R must have continuous first-order partial derivatives in a
region containing the surface S.
Surface S� This is an oriented, piecewise-smooth surface in R3.

Oriented means that the surface has a chosen normal vector n at each point,
varying continuously across the surface. This defines a "top" and "bottom" or
"inside" and "outside".
Piecewise-smooth means the surface can be decomposed into a finite number
of smooth pieces.

Boundary Curve C� This is the simple, closed, piecewise-smooth curve that forms the
edge or boundary of the surface S.

Simple means the curve does not intersect itself.
Closed means the curve starts and ends at the same point.

Positive Orientation of C� The orientation of the boundary curve C is linked to the
orientation of the surface S (defined by the normal vector n. The positive orientation
is determined by the right-hand rule: if you curl the fingers of your right hand in the
direction of the curve C, your thumb must point in the direction of the surface normal



Additional Notes

Curl and Circulation Density

The circulation of a vector field F around a simple closed curve Ca is defined by the line
integral ∮

Ca
F ⋅ T ds, where T is the unit tangent vector to the curve Ca. This integral

measures the tendency of the vector field F to "circulate" around the curve Ca.

The circulation density of F around Ca is defined as the circulation per unit area:

∮Ca
F ⋅ T ds

Area(σa)

The curl of a vector field at a point can be interpreted as a measure of the circulation
density through an axis at that point. If curl F ⋅ n is continuous at a point P , we can
consider a small surface σa containing P  with boundary curve Ca and unit normal vector n
. As the area of this surface shrinks to zero (a → 0), the component of the curl in the
direction n at point P  is given by the limit of the average value of (curl F) ⋅ n over σa:

curl F(P) ⋅ n = lim
a→0

(

1

area(σa)
∬

σa

(curl F) ⋅ n dS)

n. Traversing C in the positive direction keeps the surface S on your left, relative to
the direction of n.
Curl of F� The curl, denoted ∇ × F, measures the infinitesimal rotation or circulation
of the vector field at a point. It is defined as:

∇ × F = = (

∂R

∂y
−

∂Q

∂z
)i + (

∂P

∂z
−

∂R

∂x
)j + (

∂Q

∂x
−

∂P

∂y
)k

∣

i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

∣
Stokes' Theorem is a generalization of Green's Theorem to three dimensions. Green's
Theorem is a special instance where only the k component is nonzero.
The orientation of the curve must align with the orientation of the surface's normals.
This is done via the right hand rule applied to the curve to determine the
parametrization in a manner ensuring orientation alignment.
The right side of Stokes' Theorem, ∬S(∇ × F) ⋅ n dS, is equal for any two surfaces σ1

and σ2 as long as both surfaces share the same positively oriented boundary
(equality of the left side of Stokes' Theorem).

Here, σa represents a small surface bounded by the curve Ca. The circulation density
gives a measure of the intensity of circulation in the vicinity of the surface σa.



Using Stokes' Theorem, we can replace the surface integral with the line integral for
circulation:

curl F(P) ⋅ n = lim
a→0

∮Ca
F ⋅ T ds

area(σa)

This relationship demonstrates that curl F ⋅ n represents the circulation density of the
vector field F at point P  in the direction of the unit normal vector n. It quantifies the
"swirl" or rotational tendency of the field around an axis defined by n at point P .

Additional Notes:

Summary

Computation of Surface Integrals

When computing surface integrals, there are only a few scenarios where the "n dS"
notation should be kept. Either 1� the surface was expressed explicitly in the form
z = g(x, y) (or some equivalent form with x/y), in which the entire term becomes
⟨−zx, −zy, 1⟩ if the orientation of the normal is upward (⟨zx, zy, −1⟩ if normal is pointed
downward) or 2� the surface is in some convenient form like a sphere where unit normals
happen to be the coordinate divided by distance.

Symmetry / odd functions can become very convenient around circular regions when
collapsed to 2D after parametrization. For example, the double integral of x or y around
the circular region goes to zero. Notably, this doesn't apply when facing x2 or y2.

In all other situations, parametrization should make the computation easier.

Stokes' Theorem

Stokes' Theorem is essentially the same thing as Green's Theorem, just with all
components of curl. The most important thing is that it should only be applied when the
orientation of the surface & closed boundary curve point in the same direction.

To determine the orientation of the closed boundary curve, use the right hand rule.
Clockwise points down, counterclockwise points up.

The magnitude of the curl vector, |curl F|, represents the maximum possible
circulation density at that point. This occurs when n and curl F are aligned (due to dot
product).
The curl is also the axis of rotation for circulation at each point.



4. Vector Calculus Summary
Line Integral

Surface Integral

Divergence of F is flux density ⟶ the sum of flux density across a volume gives the flux
through the surface

Curl of F is circulation density ⟶ the sum of circulation density across a surface gives
the work done by the force across closed boundary of surface

Theorems

work - open line integral, may use fundamental theorem of line integrals if
conservative field
circulation - closed line integral

Green's Theorem / Stokes' Theorem
surface area - integrate height function along a curve
mass of string - integrate linear density along curve

surface area - integrate with integrand of 1, applying the proper transformation to get
a double integral
mass of a surface - integrate scalar density weight across surface
flux - integrate the normal components of a vector field to a surface; positive means
outward flow / source, negative means inward flow / sink
summing circulation for closed line integral / work - integrate the curl of a vector field
dotted with the normal of the surface; positive means counterclockwise circulation,
negative means clockwise circulation

Curl gives the axis of rotation for circulation
Magnitude of curl is the maximum strength of rotation (when it's aligned with unit
vector n)

Fundamental Theorem of Line Integrals
Divergence Theorem
Stokes' Theorem
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